\frac { ( 1 + 15 \% ) ^ { 12 } - 1 } { 15 \% }
Calcular
\frac{5939541477340107}{204800000000000}\approx 29,00166737
Factorizar
\frac{3 \cdot 7 \cdot 13 \cdot 43 \cdot 67 \cdot 97 \cdot 181 \cdot 463 \cdot 929}{2 ^ {22} \cdot 5 ^ {11}} = 29\frac{341477340107}{204800000000000} = 29,00166736982474
Compartir
Copiado en el Portapapeles
\frac{\left(1+\frac{3}{20}\right)^{12}-1}{\frac{15}{100}}
Reduzca la fracción \frac{15}{100} a su mínima expresión extrayendo y anulando 5.
\frac{\left(\frac{23}{20}\right)^{12}-1}{\frac{15}{100}}
Suma 1 y \frac{3}{20} para obtener \frac{23}{20}.
\frac{\frac{21914624432020321}{4096000000000000}-1}{\frac{15}{100}}
Calcula \frac{23}{20} a la potencia de 12 y obtiene \frac{21914624432020321}{4096000000000000}.
\frac{\frac{17818624432020321}{4096000000000000}}{\frac{15}{100}}
Resta 1 de \frac{21914624432020321}{4096000000000000} para obtener \frac{17818624432020321}{4096000000000000}.
\frac{\frac{17818624432020321}{4096000000000000}}{\frac{3}{20}}
Reduzca la fracción \frac{15}{100} a su mínima expresión extrayendo y anulando 5.
\frac{17818624432020321}{4096000000000000}\times \frac{20}{3}
Divide \frac{17818624432020321}{4096000000000000} por \frac{3}{20} al multiplicar \frac{17818624432020321}{4096000000000000} por el recíproco de \frac{3}{20}.
\frac{5939541477340107}{204800000000000}
Multiplica \frac{17818624432020321}{4096000000000000} y \frac{20}{3} para obtener \frac{5939541477340107}{204800000000000}.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}