Saltar al contenido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares de búsqueda web

Compartir

\frac{\left(125^{-2}\times 8^{-3}\right)^{-1}\times \left(64\times 25\right)^{2}}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Divide \frac{\left(125^{-2}\times 8^{-3}\right)^{-1}}{\left(25^{3}\times 16\right)^{-2}} por \frac{\left(5^{-3}\times 3^{2}-1\right)^{-1}}{\left(64\times 25\right)^{2}} al multiplicar \frac{\left(125^{-2}\times 8^{-3}\right)^{-1}}{\left(25^{3}\times 16\right)^{-2}} por el recíproco de \frac{\left(5^{-3}\times 3^{2}-1\right)^{-1}}{\left(64\times 25\right)^{2}}.
\frac{\left(\frac{1}{15625}\times 8^{-3}\right)^{-1}\times \left(64\times 25\right)^{2}}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Calcula 125 a la potencia de -2 y obtiene \frac{1}{15625}.
\frac{\left(\frac{1}{15625}\times \frac{1}{512}\right)^{-1}\times \left(64\times 25\right)^{2}}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Calcula 8 a la potencia de -3 y obtiene \frac{1}{512}.
\frac{\left(\frac{1}{8000000}\right)^{-1}\times \left(64\times 25\right)^{2}}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Multiplica \frac{1}{15625} y \frac{1}{512} para obtener \frac{1}{8000000}.
\frac{8000000\times \left(64\times 25\right)^{2}}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Calcula \frac{1}{8000000} a la potencia de -1 y obtiene 8000000.
\frac{8000000\times 1600^{2}}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Multiplica 64 y 25 para obtener 1600.
\frac{8000000\times 2560000}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Calcula 1600 a la potencia de 2 y obtiene 2560000.
\frac{20480000000000}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Multiplica 8000000 y 2560000 para obtener 20480000000000.
\frac{20480000000000}{\left(15625\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Calcula 25 a la potencia de 3 y obtiene 15625.
\frac{20480000000000}{250000^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Multiplica 15625 y 16 para obtener 250000.
\frac{20480000000000}{\frac{1}{62500000000}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Calcula 250000 a la potencia de -2 y obtiene \frac{1}{62500000000}.
\frac{20480000000000}{\frac{1}{62500000000}\left(\frac{1}{125}\times 3^{2}-1\right)^{-1}}
Calcula 5 a la potencia de -3 y obtiene \frac{1}{125}.
\frac{20480000000000}{\frac{1}{62500000000}\left(\frac{1}{125}\times 9-1\right)^{-1}}
Calcula 3 a la potencia de 2 y obtiene 9.
\frac{20480000000000}{\frac{1}{62500000000}\left(\frac{9}{125}-1\right)^{-1}}
Multiplica \frac{1}{125} y 9 para obtener \frac{9}{125}.
\frac{20480000000000}{\frac{1}{62500000000}\left(-\frac{116}{125}\right)^{-1}}
Resta 1 de \frac{9}{125} para obtener -\frac{116}{125}.
\frac{20480000000000}{\frac{1}{62500000000}\left(-\frac{125}{116}\right)}
Calcula -\frac{116}{125} a la potencia de -1 y obtiene -\frac{125}{116}.
\frac{20480000000000}{-\frac{1}{58000000000}}
Multiplica \frac{1}{62500000000} y -\frac{125}{116} para obtener -\frac{1}{58000000000}.
20480000000000\left(-58000000000\right)
Divide 20480000000000 por -\frac{1}{58000000000} al multiplicar 20480000000000 por el recíproco de -\frac{1}{58000000000}.
-1187840000000000000000000
Multiplica 20480000000000 y -58000000000 para obtener -1187840000000000000000000.