Saltar al contenido principal
Calcular
Tick mark Image
Expandir
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

\frac{15-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. Multiplica x^{4} por \frac{x^{2}+1}{x^{2}+1}.
\frac{15-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Como \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} y \frac{x^{4}+1}{x^{2}+1} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{15-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Haga las multiplicaciones en x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{15-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combine los términos semejantes en x^{6}+x^{4}-x^{4}-1.
\frac{15-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Multiplica \frac{x^{6}-1}{x^{2}+1} por \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6} (para hacerlo, multiplica el numerador por el numerador y el denominador por el denominador).
\frac{15-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Anula x^{2}+1 tanto en el numerador como en el denominador.
\frac{15-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Factorice las expresiones que aún no se hayan factorizado en \frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{15-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Anula \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) tanto en el numerador como en el denominador.
\frac{\frac{15\left(x+6\right)}{x+6}-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. Multiplica 15 por \frac{x+6}{x+6}.
\frac{\frac{15\left(x+6\right)-\left(x-4\right)}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Como \frac{15\left(x+6\right)}{x+6} y \frac{x-4}{x+6} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{\frac{15x+90-x+4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Haga las multiplicaciones en 15\left(x+6\right)-\left(x-4\right).
\frac{\frac{14x+94}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combine los términos semejantes en 15x+90-x+4.
\frac{\left(14x+94\right)\left(3x^{2}+12x-36\right)}{\left(x+6\right)\left(x^{2}+29x+78\right)}
Divide \frac{14x+94}{x+6} por \frac{x^{2}+29x+78}{3x^{2}+12x-36} al multiplicar \frac{14x+94}{x+6} por el recíproco de \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{2\times 3\left(x-2\right)\left(x+6\right)\left(7x+47\right)}{\left(x+3\right)\left(x+6\right)\left(x+26\right)}
Tiene en cuenta las expresiones que aún no se han tenido en cuenta.
\frac{2\times 3\left(x-2\right)\left(7x+47\right)}{\left(x+3\right)\left(x+26\right)}
Anula x+6 tanto en el numerador como en el denominador.
\frac{42x^{2}+198x-564}{x^{2}+29x+78}
Expande la expresión.
\frac{15-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. Multiplica x^{4} por \frac{x^{2}+1}{x^{2}+1}.
\frac{15-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Como \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} y \frac{x^{4}+1}{x^{2}+1} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{15-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Haga las multiplicaciones en x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{15-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combine los términos semejantes en x^{6}+x^{4}-x^{4}-1.
\frac{15-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Multiplica \frac{x^{6}-1}{x^{2}+1} por \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6} (para hacerlo, multiplica el numerador por el numerador y el denominador por el denominador).
\frac{15-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Anula x^{2}+1 tanto en el numerador como en el denominador.
\frac{15-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Factorice las expresiones que aún no se hayan factorizado en \frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{15-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Anula \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) tanto en el numerador como en el denominador.
\frac{\frac{15\left(x+6\right)}{x+6}-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. Multiplica 15 por \frac{x+6}{x+6}.
\frac{\frac{15\left(x+6\right)-\left(x-4\right)}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Como \frac{15\left(x+6\right)}{x+6} y \frac{x-4}{x+6} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{\frac{15x+90-x+4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Haga las multiplicaciones en 15\left(x+6\right)-\left(x-4\right).
\frac{\frac{14x+94}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combine los términos semejantes en 15x+90-x+4.
\frac{\left(14x+94\right)\left(3x^{2}+12x-36\right)}{\left(x+6\right)\left(x^{2}+29x+78\right)}
Divide \frac{14x+94}{x+6} por \frac{x^{2}+29x+78}{3x^{2}+12x-36} al multiplicar \frac{14x+94}{x+6} por el recíproco de \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{2\times 3\left(x-2\right)\left(x+6\right)\left(7x+47\right)}{\left(x+3\right)\left(x+6\right)\left(x+26\right)}
Tiene en cuenta las expresiones que aún no se han tenido en cuenta.
\frac{2\times 3\left(x-2\right)\left(7x+47\right)}{\left(x+3\right)\left(x+26\right)}
Anula x+6 tanto en el numerador como en el denominador.
\frac{42x^{2}+198x-564}{x^{2}+29x+78}
Expande la expresión.