Saltar al contenido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares de búsqueda web

Compartir

\frac{\left(\frac{4}{25}\times \left(\frac{1}{4}\right)^{2}\right)^{2}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Calcula -\frac{2}{5} a la potencia de 2 y obtiene \frac{4}{25}.
\frac{\left(\frac{4}{25}\times \frac{1}{16}\right)^{2}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Calcula \frac{1}{4} a la potencia de 2 y obtiene \frac{1}{16}.
\frac{\left(\frac{1}{100}\right)^{2}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Multiplica \frac{4}{25} y \frac{1}{16} para obtener \frac{1}{100}.
\frac{\frac{1}{10000}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Calcula \frac{1}{100} a la potencia de 2 y obtiene \frac{1}{10000}.
\frac{\frac{1}{10000}}{\left(25\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Calcula 5 a la potencia de 2 y obtiene 25.
\frac{\frac{1}{10000}}{\left(25\times 4\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Calcula 2 a la potencia de 2 y obtiene 4.
\frac{\frac{1}{10000}}{100^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Multiplica 25 y 4 para obtener 100.
\frac{\frac{1}{10000}}{\frac{1}{10000}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Calcula 100 a la potencia de -2 y obtiene \frac{1}{10000}.
1-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Divide \frac{1}{10000} entre \frac{1}{10000} para obtener 1.
1-\left(-\frac{4}{5}\right)^{-4}\times \left(\frac{4}{5}\right)^{2}
Para dividir potencias de la misma base, reste el exponente del denominador del exponente del numerador.
1-\frac{625}{256}\times \left(\frac{4}{5}\right)^{2}
Calcula -\frac{4}{5} a la potencia de -4 y obtiene \frac{625}{256}.
1-\frac{625}{256}\times \frac{16}{25}
Calcula \frac{4}{5} a la potencia de 2 y obtiene \frac{16}{25}.
1-\frac{25}{16}
Multiplica \frac{625}{256} y \frac{16}{25} para obtener \frac{25}{16}.
-\frac{9}{16}
Resta \frac{25}{16} de 1 para obtener -\frac{9}{16}.