Saltar al contenido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares de búsqueda web

Compartir

\frac{\left(\left(\frac{2}{3}\right)^{2}\left(-\frac{2}{3}\right)^{7}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Para multiplicar potencias de la misma base, sume sus exponentes. Sume 3 y 4 para obtener 7.
\frac{\left(\frac{4}{9}\left(-\frac{2}{3}\right)^{7}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calcula \frac{2}{3} a la potencia de 2 y obtiene \frac{4}{9}.
\frac{\left(\frac{4}{9}\left(-\frac{128}{2187}\right)\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calcula -\frac{2}{3} a la potencia de 7 y obtiene -\frac{128}{2187}.
\frac{\left(-\frac{512}{19683}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Multiplica \frac{4}{9} y -\frac{128}{2187} para obtener -\frac{512}{19683}.
\frac{\frac{262144}{387420489}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calcula -\frac{512}{19683} a la potencia de 2 y obtiene \frac{262144}{387420489}.
\frac{\frac{262144}{387420489}}{\left(-\left(-\frac{32}{243}\right)\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calcula -\frac{2}{3} a la potencia de 5 y obtiene -\frac{32}{243}.
\frac{\frac{262144}{387420489}}{\left(\frac{32}{243}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
El opuesto de -\frac{32}{243} es \frac{32}{243}.
\frac{\frac{262144}{387420489}}{\frac{32768}{14348907}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calcula \frac{32}{243} a la potencia de 3 y obtiene \frac{32768}{14348907}.
\frac{262144}{387420489}\times \frac{14348907}{32768}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Divide \frac{262144}{387420489} por \frac{32768}{14348907} al multiplicar \frac{262144}{387420489} por el recíproco de \frac{32768}{14348907}.
\frac{8}{27}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Multiplica \frac{262144}{387420489} y \frac{14348907}{32768} para obtener \frac{8}{27}.
\frac{8}{27}-\frac{8}{27}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calcula -\frac{2}{3} a la potencia de 3 y obtiene -\frac{8}{27}.
0-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Resta \frac{8}{27} de \frac{8}{27} para obtener 0.
0-\frac{16}{2401}\left(-\frac{7}{4}\right)^{4}
Calcula \frac{2}{7} a la potencia de 4 y obtiene \frac{16}{2401}.
0-\frac{16}{2401}\times \frac{2401}{256}
Calcula -\frac{7}{4} a la potencia de 4 y obtiene \frac{2401}{256}.
0-\frac{1}{16}
Multiplica \frac{16}{2401} y \frac{2401}{256} para obtener \frac{1}{16}.
-\frac{1}{16}
Resta \frac{1}{16} de 0 para obtener -\frac{1}{16}.