Løs for y (complex solution)
y=6\sqrt{2}x^{-\frac{1}{2}}
x\neq 0
Løs for x
x=\frac{72}{y^{2}}
y>0
Løs for y
y=6\sqrt{\frac{2}{x}}
x>0
Løs for x (complex solution)
x=\frac{72}{y^{2}}
arg(\sqrt{\frac{1}{y^{2}}}y)<\pi \text{ and }y\neq 0
Graf
Aktie
Kopieret til udklipsholder
\sqrt{2x}y=12
Ligningen er nu i standardform.
\frac{\sqrt{2x}y}{\sqrt{2x}}=\frac{12}{\sqrt{2x}}
Divider begge sider med \sqrt{2x}.
y=\frac{12}{\sqrt{2x}}
Division med \sqrt{2x} annullerer multiplikationen med \sqrt{2x}.
y=12\times \left(2x\right)^{-\frac{1}{2}}
Divider 12 med \sqrt{2x}.
\frac{y\sqrt{2x}}{y}=\frac{12}{y}
Divider begge sider med y.
\sqrt{2x}=\frac{12}{y}
Division med y annullerer multiplikationen med y.
2x=\frac{144}{y^{2}}
Kvadrér begge sider af ligningen.
\frac{2x}{2}=\frac{144}{2y^{2}}
Divider begge sider med 2.
x=\frac{144}{2y^{2}}
Division med 2 annullerer multiplikationen med 2.
x=\frac{72}{y^{2}}
Divider \frac{144}{y^{2}} med 2.
\sqrt{2x}y=12
Ligningen er nu i standardform.
\frac{\sqrt{2x}y}{\sqrt{2x}}=\frac{12}{\sqrt{2x}}
Divider begge sider med \sqrt{2x}.
y=\frac{12}{\sqrt{2x}}
Division med \sqrt{2x} annullerer multiplikationen med \sqrt{2x}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}