Løs for y
y=-\frac{\left(x-8\right)\left(x^{2}+4\right)}{8}
Graf
Aktie
Kopieret til udklipsholder
y=8-x+\left(\frac{1}{2}x-2\right)\left(2x-\frac{1}{4}x^{2}+1\right)-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
Brug fordelingsegenskaben til at multiplicere \frac{1}{2} med x-4.
y=8-x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-\frac{7}{2}x-2-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
Brug fordelingsegenskaben til at multiplicere \frac{1}{2}x-2 med 2x-\frac{1}{4}x^{2}+1, og kombiner ens led.
y=8-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
Kombiner -x og -\frac{7}{2}x for at få -\frac{9}{2}x.
y=6-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
Subtraher 2 fra 8 for at få 6.
y=6-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2\left(1-2x+\frac{1}{4}x^{2}\right)
Subtraher 1 fra 2 for at få 1.
y=6-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2+4x-\frac{1}{2}x^{2}
Brug fordelingsegenskaben til at multiplicere -2 med 1-2x+\frac{1}{4}x^{2}.
y=4-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}+4x-\frac{1}{2}x^{2}
Subtraher 2 fra 6 for at få 4.
y=4-\frac{1}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-\frac{1}{2}x^{2}
Kombiner -\frac{9}{2}x og 4x for at få -\frac{1}{2}x.
y=4-\frac{1}{2}x+x^{2}-\frac{1}{8}x^{3}
Kombiner \frac{3}{2}x^{2} og -\frac{1}{2}x^{2} for at få x^{2}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}