Løs for f (complex solution)
\left\{\begin{matrix}f=-\frac{y+2}{2\left(x+1\right)}\text{, }&x\neq -1\\f\in \mathrm{C}\text{, }&y=-2\text{ and }x=-1\end{matrix}\right,
Løs for x (complex solution)
\left\{\begin{matrix}x=\frac{-y-2f-2}{2f}\text{, }&f\neq 0\\x\in \mathrm{C}\text{, }&y=-2\text{ and }f=0\end{matrix}\right,
Løs for f
\left\{\begin{matrix}f=-\frac{y+2}{2\left(x+1\right)}\text{, }&x\neq -1\\f\in \mathrm{R}\text{, }&y=-2\text{ and }x=-1\end{matrix}\right,
Løs for x
\left\{\begin{matrix}x=\frac{-y-2f-2}{2f}\text{, }&f\neq 0\\x\in \mathrm{R}\text{, }&y=-2\text{ and }f=0\end{matrix}\right,
Graf
Aktie
Kopieret til udklipsholder
y=-2fx-2f-2
Brug fordelingsegenskaben til at multiplicere -2f med x+1.
-2fx-2f-2=y
Skift side, så alle variable led er placeret på venstre side.
-2fx-2f=y+2
Tilføj 2 på begge sider.
\left(-2x-2\right)f=y+2
Kombiner alle led med f.
\frac{\left(-2x-2\right)f}{-2x-2}=\frac{y+2}{-2x-2}
Divider begge sider med -2x-2.
f=\frac{y+2}{-2x-2}
Division med -2x-2 annullerer multiplikationen med -2x-2.
f=-\frac{y+2}{2\left(x+1\right)}
Divider y+2 med -2x-2.
y=-2fx-2f-2
Brug fordelingsegenskaben til at multiplicere -2f med x+1.
-2fx-2f-2=y
Skift side, så alle variable led er placeret på venstre side.
-2fx-2=y+2f
Tilføj 2f på begge sider.
-2fx=y+2f+2
Tilføj 2 på begge sider.
\left(-2f\right)x=y+2f+2
Ligningen er nu i standardform.
\frac{\left(-2f\right)x}{-2f}=\frac{y+2f+2}{-2f}
Divider begge sider med -2f.
x=\frac{y+2f+2}{-2f}
Division med -2f annullerer multiplikationen med -2f.
x=-\frac{y+2f+2}{2f}
Divider y+2+2f med -2f.
y=-2fx-2f-2
Brug fordelingsegenskaben til at multiplicere -2f med x+1.
-2fx-2f-2=y
Skift side, så alle variable led er placeret på venstre side.
-2fx-2f=y+2
Tilføj 2 på begge sider.
\left(-2x-2\right)f=y+2
Kombiner alle led med f.
\frac{\left(-2x-2\right)f}{-2x-2}=\frac{y+2}{-2x-2}
Divider begge sider med -2x-2.
f=\frac{y+2}{-2x-2}
Division med -2x-2 annullerer multiplikationen med -2x-2.
f=-\frac{y+2}{2\left(x+1\right)}
Divider y+2 med -2x-2.
y=-2fx-2f-2
Brug fordelingsegenskaben til at multiplicere -2f med x+1.
-2fx-2f-2=y
Skift side, så alle variable led er placeret på venstre side.
-2fx-2=y+2f
Tilføj 2f på begge sider.
-2fx=y+2f+2
Tilføj 2 på begge sider.
\left(-2f\right)x=y+2f+2
Ligningen er nu i standardform.
\frac{\left(-2f\right)x}{-2f}=\frac{y+2f+2}{-2f}
Divider begge sider med -2f.
x=\frac{y+2f+2}{-2f}
Division med -2f annullerer multiplikationen med -2f.
x=-\frac{y+2f+2}{2f}
Divider y+2+2f med -2f.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}