Løs for A (complex solution)
A=-i\ln(\sqrt{1-y^{2}}+iy)+2\pi n_{1}-B\text{, }n_{1}\in \mathrm{Z}
A=-i\ln(-\sqrt{1-y^{2}}+iy)+2\pi n_{2}-B\text{, }n_{2}\in \mathrm{Z}
Løs for B (complex solution)
B=-i\ln(\sqrt{1-y^{2}}+iy)+2\pi n_{1}-A\text{, }n_{1}\in \mathrm{Z}
B=-i\ln(-\sqrt{1-y^{2}}+iy)+2\pi n_{2}-A\text{, }n_{2}\in \mathrm{Z}
Løs for A
A=\arcsin(y)+2\pi n_{1}-B\text{, }n_{1}\in \mathrm{Z}
A=-\arcsin(y)+2\pi n_{2}-B+\pi \text{, }n_{2}\in \mathrm{Z}\text{, }|y|\leq 1
Løs for B
B=\arcsin(y)+2\pi n_{1}-A\text{, }n_{1}\in \mathrm{Z}
B=-\arcsin(y)+2\pi n_{2}-A+\pi \text{, }n_{2}\in \mathrm{Z}\text{, }|y|\leq 1
Graf
Aktie
Kopieret til udklipsholder
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}