Løs for x
\left\{\begin{matrix}x=-\arccos(\frac{\sqrt{8y+17}+1}{4})+2\pi n_{1}+\pi \text{, }n_{1}\in \mathrm{Z}\text{; }x=\arccos(\frac{\sqrt{8y+17}+1}{4})+2\pi n_{2}-\pi \text{, }n_{2}\in \mathrm{Z}\text{, }&y\leq -1\text{ and }y\geq -\frac{17}{8}\text{ and }\frac{-\sqrt{8y+17}-1}{4}\geq -1\\x=-\arccos(\frac{-\sqrt{8y+17}+1}{4})+2\pi n_{3}+\pi \text{, }n_{3}\in \mathrm{Z}\text{; }x=\arccos(\frac{-\sqrt{8y+17}+1}{4})+2\pi n_{4}-\pi \text{, }n_{4}\in \mathrm{Z}\text{, }&y\leq 1\text{ and }y\geq -\frac{17}{8}\text{ and }\frac{\sqrt{8y+17}-1}{4}\leq 1\end{matrix}\right,
Løs for y
y=-2\left(\sin(x)\right)^{2}+\cos(x)
Graf
Aktie
Kopieret til udklipsholder
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}