Evaluer
x\left(x-1\right)\left(x^{2}-4\right)
Udvid
x^{4}-x^{3}-4x^{2}+4x
Graf
Aktie
Kopieret til udklipsholder
\left(x^{2}-2x\right)\left(x+2\right)\left(x-1\right)
Brug fordelingsegenskaben til at multiplicere x med x-2.
\left(x^{3}+2x^{2}-2x^{2}-4x\right)\left(x-1\right)
Anvend fordelingsegenskaben ved at gange hvert led i x^{2}-2x med hvert led i x+2.
\left(x^{3}-4x\right)\left(x-1\right)
Kombiner 2x^{2} og -2x^{2} for at få 0.
x^{4}-x^{3}-4x^{2}+4x
Anvend fordelingsegenskaben ved at gange hvert led i x^{3}-4x med hvert led i x-1.
\left(x^{2}-2x\right)\left(x+2\right)\left(x-1\right)
Brug fordelingsegenskaben til at multiplicere x med x-2.
\left(x^{3}+2x^{2}-2x^{2}-4x\right)\left(x-1\right)
Anvend fordelingsegenskaben ved at gange hvert led i x^{2}-2x med hvert led i x+2.
\left(x^{3}-4x\right)\left(x-1\right)
Kombiner 2x^{2} og -2x^{2} for at få 0.
x^{4}-x^{3}-4x^{2}+4x
Anvend fordelingsegenskaben ved at gange hvert led i x^{3}-4x med hvert led i x-1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}