Løs for y
y=\frac{3x}{2\left(2-3x\right)}
x\neq \frac{2}{3}
Løs for x
x=\frac{4y}{3\left(2y+1\right)}
y\neq -\frac{1}{2}
Graf
Aktie
Kopieret til udklipsholder
x\times 6\left(-2y-1\right)=-8y
Variablen y må ikke være lig med -\frac{1}{2}, fordi division med nul ikke er defineret. Multiplicer begge sider af ligningen med 6\left(-2y-1\right).
-12xy-x\times 6=-8y
Brug fordelingsegenskaben til at multiplicere x\times 6 med -2y-1.
-12xy-6x=-8y
Multiplicer -1 og 6 for at få -6.
-12xy-6x+8y=0
Tilføj 8y på begge sider.
-12xy+8y=6x
Tilføj 6x på begge sider. Ethvert tal plus nul giver tallet selv.
\left(-12x+8\right)y=6x
Kombiner alle led med y.
\left(8-12x\right)y=6x
Ligningen er nu i standardform.
\frac{\left(8-12x\right)y}{8-12x}=\frac{6x}{8-12x}
Divider begge sider med -12x+8.
y=\frac{6x}{8-12x}
Division med -12x+8 annullerer multiplikationen med -12x+8.
y=\frac{3x}{2\left(2-3x\right)}
Divider 6x med -12x+8.
y=\frac{3x}{2\left(2-3x\right)}\text{, }y\neq -\frac{1}{2}
Variablen y må ikke være lig med -\frac{1}{2}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}