Faktoriser
\left(x-4\right)\left(x+5\right)x^{2}
Evaluer
\left(x-4\right)\left(x+5\right)x^{2}
Graf
Aktie
Kopieret til udklipsholder
x^{2}\left(x^{2}+x-20\right)
Udfaktoriser x^{2}.
a+b=1 ab=1\left(-20\right)=-20
Overvej x^{2}+x-20. Faktoriser udtrykket ved gruppering. Først skal udtrykket omskrives som x^{2}+ax+bx-20. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
-1,20 -2,10 -4,5
Da ab er negative, skal a og b have de modsatte tegn. Da a+b er positivt, har det positive tal en større absolut værdi end det negative. Vis alle disse heltals par, der giver produkt -20.
-1+20=19 -2+10=8 -4+5=1
Beregn summen af hvert par.
a=-4 b=5
Løsningen er det par, der får summen 1.
\left(x^{2}-4x\right)+\left(5x-20\right)
Omskriv x^{2}+x-20 som \left(x^{2}-4x\right)+\left(5x-20\right).
x\left(x-4\right)+5\left(x-4\right)
Udx i den første og 5 i den anden gruppe.
\left(x-4\right)\left(x+5\right)
Udfaktoriser fællesleddet x-4 ved hjælp af fordelingsegenskaben.
x^{2}\left(x-4\right)\left(x+5\right)
Omskriv hele det faktoriserede udtryk.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}