Spring videre til hovedindholdet
Faktoriser
Tick mark Image
Evaluer
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

x^{2}-4x-4=0
Kvadratisk polynomium kan faktoriseres ved hjælp af transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), hvor x_{1} og x_{2} er løsninger af den kvadratiske ligning ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-4\right)}}{2}
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-4\right)}}{2}
Kvadrér -4.
x=\frac{-\left(-4\right)±\sqrt{16+16}}{2}
Multiplicer -4 gange -4.
x=\frac{-\left(-4\right)±\sqrt{32}}{2}
Adder 16 til 16.
x=\frac{-\left(-4\right)±4\sqrt{2}}{2}
Tag kvadratroden af 32.
x=\frac{4±4\sqrt{2}}{2}
Det modsatte af -4 er 4.
x=\frac{4\sqrt{2}+4}{2}
Nu skal du løse ligningen, x=\frac{4±4\sqrt{2}}{2} når ± er plus. Adder 4 til 4\sqrt{2}.
x=2\sqrt{2}+2
Divider 4+4\sqrt{2} med 2.
x=\frac{4-4\sqrt{2}}{2}
Nu skal du løse ligningen, x=\frac{4±4\sqrt{2}}{2} når ± er minus. Subtraher 4\sqrt{2} fra 4.
x=2-2\sqrt{2}
Divider 4-4\sqrt{2} med 2.
x^{2}-4x-4=\left(x-\left(2\sqrt{2}+2\right)\right)\left(x-\left(2-2\sqrt{2}\right)\right)
Faktoriser det oprindelige udtryk ved hjælp af ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstat 2+2\sqrt{2} med x_{1} og 2-2\sqrt{2} med x_{2}.