Spring videre til hovedindholdet
Løs for x
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

a+b=-2 ab=-63
Faktor x^{2}-2x-63 ved hjælp af formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) for at løse ligningen. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
1,-63 3,-21 7,-9
Da ab er negative, skal a og b have de modsatte tegn. Da a+b er negativt, har det negative tal en højere absolut værdi end det positive. Vis alle disse heltals par, der giver produkt -63.
1-63=-62 3-21=-18 7-9=-2
Beregn summen af hvert par.
a=-9 b=7
Løsningen er det par, der får summen -2.
\left(x-9\right)\left(x+7\right)
Omskriv det faktoriserede udtryk \left(x+a\right)\left(x+b\right) ved hjælp af de opnåede værdier.
x=9 x=-7
Løs x-9=0 og x+7=0 for at finde Lignings løsninger.
a+b=-2 ab=1\left(-63\right)=-63
Hvis du vil løse ligningen, skal du faktor venstre side ved at gruppere. For det første skal venstre side ikke skrives som x^{2}+ax+bx-63. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
1,-63 3,-21 7,-9
Da ab er negative, skal a og b have de modsatte tegn. Da a+b er negativt, har det negative tal en højere absolut værdi end det positive. Vis alle disse heltals par, der giver produkt -63.
1-63=-62 3-21=-18 7-9=-2
Beregn summen af hvert par.
a=-9 b=7
Løsningen er det par, der får summen -2.
\left(x^{2}-9x\right)+\left(7x-63\right)
Omskriv x^{2}-2x-63 som \left(x^{2}-9x\right)+\left(7x-63\right).
x\left(x-9\right)+7\left(x-9\right)
Udx i den første og 7 i den anden gruppe.
\left(x-9\right)\left(x+7\right)
Udfaktoriser fællesleddet x-9 ved hjælp af fordelingsegenskaben.
x=9 x=-7
Løs x-9=0 og x+7=0 for at finde Lignings løsninger.
x^{2}-2x-63=0
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-63\right)}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, -2 med b og -63 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-63\right)}}{2}
Kvadrér -2.
x=\frac{-\left(-2\right)±\sqrt{4+252}}{2}
Multiplicer -4 gange -63.
x=\frac{-\left(-2\right)±\sqrt{256}}{2}
Adder 4 til 252.
x=\frac{-\left(-2\right)±16}{2}
Tag kvadratroden af 256.
x=\frac{2±16}{2}
Det modsatte af -2 er 2.
x=\frac{18}{2}
Nu skal du løse ligningen, x=\frac{2±16}{2} når ± er plus. Adder 2 til 16.
x=9
Divider 18 med 2.
x=-\frac{14}{2}
Nu skal du løse ligningen, x=\frac{2±16}{2} når ± er minus. Subtraher 16 fra 2.
x=-7
Divider -14 med 2.
x=9 x=-7
Ligningen er nu løst.
x^{2}-2x-63=0
Kvadratligninger som denne kan løses ved at fuldføre kvadratet. Ligningen skal først være i formlen x^{2}+bx=c for at fuldføre kvadratet.
x^{2}-2x-63-\left(-63\right)=-\left(-63\right)
Adder 63 på begge sider af ligningen.
x^{2}-2x=-\left(-63\right)
Hvis -63 subtraheres fra sig selv, giver det 0.
x^{2}-2x=63
Subtraher -63 fra 0.
x^{2}-2x+1=63+1
Divider -2, som er koefficienten for leddet x, med 2 for at få -1. Adder derefter kvadratet af -1 på begge sider af ligningen. Dette trin gør venstre side af ligningen til et perfekt kvadrat.
x^{2}-2x+1=64
Adder 63 til 1.
\left(x-1\right)^{2}=64
Faktor x^{2}-2x+1. Generelt kan det altid faktoreres som \left(x+\frac{b}{2}\right)^{2}, når x^{2}+bx+c er et perfekt kvadrat.
\sqrt{\left(x-1\right)^{2}}=\sqrt{64}
Tag kvadratroden af begge sider i ligningen.
x-1=8 x-1=-8
Forenkling.
x=9 x=-7
Adder 1 på begge sider af ligningen.