Løs for x
x=2
x = \frac{3}{2} = 1\frac{1}{2} = 1,5
x=-2
Graf
Aktie
Kopieret til udklipsholder
2x^{3}-3x^{2}=4\left(2x-3\right)
Brug fordelingsegenskaben til at multiplicere x^{2} med 2x-3.
2x^{3}-3x^{2}=8x-12
Brug fordelingsegenskaben til at multiplicere 4 med 2x-3.
2x^{3}-3x^{2}-8x=-12
Subtraher 8x fra begge sider.
2x^{3}-3x^{2}-8x+12=0
Tilføj 12 på begge sider.
±6,±12,±3,±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
Med Rational sætning er alle de rationelle rødder af en polynomisk værdi i form af \frac{p}{q}, hvor p Dividerer den konstante term 12 og q opdeler den fordelingskoefficient 2. Vis en liste over alle ansøgere \frac{p}{q}.
x=2
Find en sådan rod ved at afprøve alle heltalsværdierne. Begynd med den mindste efter absolut værdi. Hvis der ikke findes nogen heltals rødder, kan du prøve at bruge brøker.
2x^{2}+x-6=0
Efter faktor sætning er x-k en faktor på polynomiet for hver rod k. Divider 2x^{3}-3x^{2}-8x+12 med x-2 for at få 2x^{2}+x-6. Løs ligningen, hvor resultatet er lig med 0.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-6\right)}}{2\times 2}
Alle ligninger i formlen ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Erstat 2 med a, 1 med b, og -6 med c i den kvadratiske formel.
x=\frac{-1±7}{4}
Lav beregningerne.
x=-2 x=\frac{3}{2}
Løs ligningen 2x^{2}+x-6=0 når ± er plus, og når ± er minus.
x=2 x=-2 x=\frac{3}{2}
Vis alle fundne løsninger.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}