Faktoriser
\left(x-\frac{-\sqrt{61}-7}{2}\right)\left(x-\frac{\sqrt{61}-7}{2}\right)
Evaluer
x^{2}+7x-3
Graf
Aktie
Kopieret til udklipsholder
x^{2}+7x-3=0
Kvadratisk polynomium kan faktoriseres ved hjælp af transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), hvor x_{1} og x_{2} er løsninger af den kvadratiske ligning ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\left(-3\right)}}{2}
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-7±\sqrt{49-4\left(-3\right)}}{2}
Kvadrér 7.
x=\frac{-7±\sqrt{49+12}}{2}
Multiplicer -4 gange -3.
x=\frac{-7±\sqrt{61}}{2}
Adder 49 til 12.
x=\frac{\sqrt{61}-7}{2}
Nu skal du løse ligningen, x=\frac{-7±\sqrt{61}}{2} når ± er plus. Adder -7 til \sqrt{61}.
x=\frac{-\sqrt{61}-7}{2}
Nu skal du løse ligningen, x=\frac{-7±\sqrt{61}}{2} når ± er minus. Subtraher \sqrt{61} fra -7.
x^{2}+7x-3=\left(x-\frac{\sqrt{61}-7}{2}\right)\left(x-\frac{-\sqrt{61}-7}{2}\right)
Faktoriser det oprindelige udtryk ved hjælp af ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstat \frac{-7+\sqrt{61}}{2} med x_{1} og \frac{-7-\sqrt{61}}{2} med x_{2}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}