Spring videre til hovedindholdet
Faktoriser
Tick mark Image
Evaluer
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

x\left(x+5\right)
Udfaktoriser x.
x^{2}+5x=0
Kvadratisk polynomium kan faktoriseres ved hjælp af transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), hvor x_{1} og x_{2} er løsninger af den kvadratiske ligning ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}}}{2}
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-5±5}{2}
Tag kvadratroden af 5^{2}.
x=\frac{0}{2}
Nu skal du løse ligningen, x=\frac{-5±5}{2} når ± er plus. Adder -5 til 5.
x=0
Divider 0 med 2.
x=-\frac{10}{2}
Nu skal du løse ligningen, x=\frac{-5±5}{2} når ± er minus. Subtraher 5 fra -5.
x=-5
Divider -10 med 2.
x^{2}+5x=x\left(x-\left(-5\right)\right)
Faktoriser det oprindelige udtryk ved hjælp af ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstat 0 med x_{1} og -5 med x_{2}.
x^{2}+5x=x\left(x+5\right)
Sørg for at forenkle alle udtryk af formen p-\left(-q\right) til p+q.