Spring videre til hovedindholdet
Løs for x
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

x^{2}+4x+8-4=0
Subtraher 4 fra begge sider.
x^{2}+4x+4=0
Subtraher 4 fra 8 for at få 4.
a+b=4 ab=4
Faktor x^{2}+4x+4 ved hjælp af formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) for at løse ligningen. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
1,4 2,2
Da ab er positivt, skal a og b have samme fortegn. Da a+b er positivt, er a og b begge positive. Vis alle disse heltals par, der giver produkt 4.
1+4=5 2+2=4
Beregn summen af hvert par.
a=2 b=2
Løsningen er det par, der får summen 4.
\left(x+2\right)\left(x+2\right)
Omskriv det faktoriserede udtryk \left(x+a\right)\left(x+b\right) ved hjælp af de opnåede værdier.
\left(x+2\right)^{2}
Omskriv som et binomialt kvadrat.
x=-2
For at finde Ligningsløsningen skal du løse x+2=0.
x^{2}+4x+8-4=0
Subtraher 4 fra begge sider.
x^{2}+4x+4=0
Subtraher 4 fra 8 for at få 4.
a+b=4 ab=1\times 4=4
Hvis du vil løse ligningen, skal du faktor venstre side ved at gruppere. For det første skal venstre side ikke skrives som x^{2}+ax+bx+4. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
1,4 2,2
Da ab er positivt, skal a og b have samme fortegn. Da a+b er positivt, er a og b begge positive. Vis alle disse heltals par, der giver produkt 4.
1+4=5 2+2=4
Beregn summen af hvert par.
a=2 b=2
Løsningen er det par, der får summen 4.
\left(x^{2}+2x\right)+\left(2x+4\right)
Omskriv x^{2}+4x+4 som \left(x^{2}+2x\right)+\left(2x+4\right).
x\left(x+2\right)+2\left(x+2\right)
Udx i den første og 2 i den anden gruppe.
\left(x+2\right)\left(x+2\right)
Udfaktoriser fællesleddet x+2 ved hjælp af fordelingsegenskaben.
\left(x+2\right)^{2}
Omskriv som et binomialt kvadrat.
x=-2
For at finde Ligningsløsningen skal du løse x+2=0.
x^{2}+4x+8=4
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x^{2}+4x+8-4=4-4
Subtraher 4 fra begge sider af ligningen.
x^{2}+4x+8-4=0
Hvis 4 subtraheres fra sig selv, giver det 0.
x^{2}+4x+4=0
Subtraher 4 fra 8.
x=\frac{-4±\sqrt{4^{2}-4\times 4}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, 4 med b og 4 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4}}{2}
Kvadrér 4.
x=\frac{-4±\sqrt{16-16}}{2}
Multiplicer -4 gange 4.
x=\frac{-4±\sqrt{0}}{2}
Adder 16 til -16.
x=-\frac{4}{2}
Tag kvadratroden af 0.
x=-2
Divider -4 med 2.
x^{2}+4x+8=4
Kvadratligninger som denne kan løses ved at fuldføre kvadratet. Ligningen skal først være i formlen x^{2}+bx=c for at fuldføre kvadratet.
x^{2}+4x+8-8=4-8
Subtraher 8 fra begge sider af ligningen.
x^{2}+4x=4-8
Hvis 8 subtraheres fra sig selv, giver det 0.
x^{2}+4x=-4
Subtraher 8 fra 4.
x^{2}+4x+2^{2}=-4+2^{2}
Divider 4, som er koefficienten for leddet x, med 2 for at få 2. Adder derefter kvadratet af 2 på begge sider af ligningen. Dette trin gør venstre side af ligningen til et perfekt kvadrat.
x^{2}+4x+4=-4+4
Kvadrér 2.
x^{2}+4x+4=0
Adder -4 til 4.
\left(x+2\right)^{2}=0
Faktor x^{2}+4x+4. Generelt kan det altid faktoreres som \left(x+\frac{b}{2}\right)^{2}, når x^{2}+bx+c er et perfekt kvadrat.
\sqrt{\left(x+2\right)^{2}}=\sqrt{0}
Tag kvadratroden af begge sider i ligningen.
x+2=0 x+2=0
Forenkling.
x=-2 x=-2
Subtraher 2 fra begge sider af ligningen.
x=-2
Ligningen er nu løst. Løsningerne er de samme.