Løs for r
\left\{\begin{matrix}r=\frac{\sqrt[3]{5\left(x-4\right)}}{u_{1}}\text{, }&u_{1}\neq 0\\r\in \mathrm{R}\text{, }&x=4\text{ and }u_{1}=0\end{matrix}\right,
Løs for u_1
\left\{\begin{matrix}u_{1}=\frac{\sqrt[3]{5\left(x-4\right)}}{r}\text{, }&r\neq 0\\u_{1}\in \mathrm{R}\text{, }&x=4\text{ and }r=0\end{matrix}\right,
Aktie
Kopieret til udklipsholder
u_{1}r=\sqrt[3]{5x-20}
Ligningen er nu i standardform.
\frac{u_{1}r}{u_{1}}=\frac{\sqrt[3]{5x-20}}{u_{1}}
Divider begge sider med u_{1}.
r=\frac{\sqrt[3]{5x-20}}{u_{1}}
Division med u_{1} annullerer multiplikationen med u_{1}.
ru_{1}=\sqrt[3]{5x-20}
Ligningen er nu i standardform.
\frac{ru_{1}}{r}=\frac{\sqrt[3]{5x-20}}{r}
Divider begge sider med r.
u_{1}=\frac{\sqrt[3]{5x-20}}{r}
Division med r annullerer multiplikationen med r.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}