Spring videre til hovedindholdet
Faktoriser
Tick mark Image
Evaluer
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

3x^{2}-5x+1=0
Kvadratisk polynomium kan faktoriseres ved hjælp af transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), hvor x_{1} og x_{2} er løsninger af den kvadratiske ligning ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3}}{2\times 3}
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3}}{2\times 3}
Kvadrér -5.
x=\frac{-\left(-5\right)±\sqrt{25-12}}{2\times 3}
Multiplicer -4 gange 3.
x=\frac{-\left(-5\right)±\sqrt{13}}{2\times 3}
Adder 25 til -12.
x=\frac{5±\sqrt{13}}{2\times 3}
Det modsatte af -5 er 5.
x=\frac{5±\sqrt{13}}{6}
Multiplicer 2 gange 3.
x=\frac{\sqrt{13}+5}{6}
Nu skal du løse ligningen, x=\frac{5±\sqrt{13}}{6} når ± er plus. Adder 5 til \sqrt{13}.
x=\frac{5-\sqrt{13}}{6}
Nu skal du løse ligningen, x=\frac{5±\sqrt{13}}{6} når ± er minus. Subtraher \sqrt{13} fra 5.
3x^{2}-5x+1=3\left(x-\frac{\sqrt{13}+5}{6}\right)\left(x-\frac{5-\sqrt{13}}{6}\right)
Faktoriser det oprindelige udtryk ved hjælp af ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstat \frac{5+\sqrt{13}}{6} med x_{1} og \frac{5-\sqrt{13}}{6} med x_{2}.