Løs for f
f=y\left(x^{2}-2\right)
y\neq 0
Løs for x (complex solution)
x=-\sqrt{\frac{f}{y}+2}
x=\sqrt{\frac{f}{y}+2}\text{, }y\neq 0
Løs for x
x=\sqrt{\frac{f}{y}+2}
x=-\sqrt{\frac{f}{y}+2}\text{, }\left(y<0\text{ or }f\geq -2y\right)\text{ and }\left(y>0\text{ or }f\leq -2y\right)\text{ and }y\neq 0
Graf
Aktie
Kopieret til udklipsholder
\frac{1}{y}f=x^{2}-2
Ligningen er nu i standardform.
\frac{\frac{1}{y}fy}{1}=\frac{\left(x^{2}-2\right)y}{1}
Divider begge sider med y^{-1}.
f=\frac{\left(x^{2}-2\right)y}{1}
Division med y^{-1} annullerer multiplikationen med y^{-1}.
f=y\left(x^{2}-2\right)
Divider x^{2}-2 med y^{-1}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}