a y ^ { 2 } d y = a y ^ { 3 } + c
Løs for a
\left\{\begin{matrix}a=\frac{c}{\left(d-1\right)y^{3}}\text{, }&y\neq 0\text{ and }d\neq 1\\a\in \mathrm{R}\text{, }&\left(y=0\text{ or }d=1\right)\text{ and }c=0\end{matrix}\right,
Løs for c
c=a\left(d-1\right)y^{3}
Aktie
Kopieret til udklipsholder
ay^{3}d=ay^{3}+c
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 2 og 1 for at få 3.
ay^{3}d-ay^{3}=c
Subtraher ay^{3} fra begge sider.
ady^{3}-ay^{3}=c
Skift rækkefølge for leddene.
\left(dy^{3}-y^{3}\right)a=c
Kombiner alle led med a.
\frac{\left(dy^{3}-y^{3}\right)a}{dy^{3}-y^{3}}=\frac{c}{dy^{3}-y^{3}}
Divider begge sider med dy^{3}-y^{3}.
a=\frac{c}{dy^{3}-y^{3}}
Division med dy^{3}-y^{3} annullerer multiplikationen med dy^{3}-y^{3}.
a=\frac{c}{\left(d-1\right)y^{3}}
Divider c med dy^{3}-y^{3}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}