Løs for a (complex solution)
a=-\frac{2\left(2-x\right)\left(2x+3\right)}{x\left(x+2\right)}
x\neq -2\text{ and }x\neq 0\text{ and }x\neq 2
Løs for a
a=-\frac{2\left(2-x\right)\left(2x+3\right)}{x\left(x+2\right)}
x\neq 0\text{ and }|x|\neq 2
Løs for x
\left\{\begin{matrix}x=-\frac{\sqrt{a^{2}-10a+49}+a+1}{a-4}\text{, }&a\neq 0\text{ and }a\neq 4\\x=\frac{\sqrt{a^{2}-10a+49}-a-1}{a-4}\text{, }&a\neq 4\\x=-\frac{6}{5}\text{, }&a=4\end{matrix}\right,
Graf
Aktie
Kopieret til udklipsholder
a\left(x+2\right)x-\left(x-2\right)x=3\left(x-2\right)\left(x+2\right)
Gang begge sider af ligningen med \left(x-2\right)\left(x+2\right), det mindste fælles multiplum af x-2,x+2.
\left(ax+2a\right)x-\left(x-2\right)x=3\left(x-2\right)\left(x+2\right)
Brug fordelingsegenskaben til at multiplicere a med x+2.
ax^{2}+2ax-\left(x-2\right)x=3\left(x-2\right)\left(x+2\right)
Brug fordelingsegenskaben til at multiplicere ax+2a med x.
ax^{2}+2ax-\left(x^{2}-2x\right)=3\left(x-2\right)\left(x+2\right)
Brug fordelingsegenskaben til at multiplicere x-2 med x.
ax^{2}+2ax-x^{2}+2x=3\left(x-2\right)\left(x+2\right)
For at finde det modsatte af x^{2}-2x skal du finde det modsatte af hvert led.
ax^{2}+2ax-x^{2}+2x=\left(3x-6\right)\left(x+2\right)
Brug fordelingsegenskaben til at multiplicere 3 med x-2.
ax^{2}+2ax-x^{2}+2x=3x^{2}-12
Brug fordelingsegenskaben til at multiplicere 3x-6 med x+2, og kombiner ens led.
ax^{2}+2ax+2x=3x^{2}-12+x^{2}
Tilføj x^{2} på begge sider.
ax^{2}+2ax+2x=4x^{2}-12
Kombiner 3x^{2} og x^{2} for at få 4x^{2}.
ax^{2}+2ax=4x^{2}-12-2x
Subtraher 2x fra begge sider.
\left(x^{2}+2x\right)a=4x^{2}-12-2x
Kombiner alle led med a.
\left(x^{2}+2x\right)a=4x^{2}-2x-12
Ligningen er nu i standardform.
\frac{\left(x^{2}+2x\right)a}{x^{2}+2x}=\frac{2\left(x-2\right)\left(2x+3\right)}{x^{2}+2x}
Divider begge sider med x^{2}+2x.
a=\frac{2\left(x-2\right)\left(2x+3\right)}{x^{2}+2x}
Division med x^{2}+2x annullerer multiplikationen med x^{2}+2x.
a=\frac{2\left(x-2\right)\left(2x+3\right)}{x\left(x+2\right)}
Divider 2\left(-2+x\right)\left(3+2x\right) med x^{2}+2x.
a\left(x+2\right)x-\left(x-2\right)x=3\left(x-2\right)\left(x+2\right)
Gang begge sider af ligningen med \left(x-2\right)\left(x+2\right), det mindste fælles multiplum af x-2,x+2.
\left(ax+2a\right)x-\left(x-2\right)x=3\left(x-2\right)\left(x+2\right)
Brug fordelingsegenskaben til at multiplicere a med x+2.
ax^{2}+2ax-\left(x-2\right)x=3\left(x-2\right)\left(x+2\right)
Brug fordelingsegenskaben til at multiplicere ax+2a med x.
ax^{2}+2ax-\left(x^{2}-2x\right)=3\left(x-2\right)\left(x+2\right)
Brug fordelingsegenskaben til at multiplicere x-2 med x.
ax^{2}+2ax-x^{2}+2x=3\left(x-2\right)\left(x+2\right)
For at finde det modsatte af x^{2}-2x skal du finde det modsatte af hvert led.
ax^{2}+2ax-x^{2}+2x=\left(3x-6\right)\left(x+2\right)
Brug fordelingsegenskaben til at multiplicere 3 med x-2.
ax^{2}+2ax-x^{2}+2x=3x^{2}-12
Brug fordelingsegenskaben til at multiplicere 3x-6 med x+2, og kombiner ens led.
ax^{2}+2ax+2x=3x^{2}-12+x^{2}
Tilføj x^{2} på begge sider.
ax^{2}+2ax+2x=4x^{2}-12
Kombiner 3x^{2} og x^{2} for at få 4x^{2}.
ax^{2}+2ax=4x^{2}-12-2x
Subtraher 2x fra begge sider.
\left(x^{2}+2x\right)a=4x^{2}-12-2x
Kombiner alle led med a.
\left(x^{2}+2x\right)a=4x^{2}-2x-12
Ligningen er nu i standardform.
\frac{\left(x^{2}+2x\right)a}{x^{2}+2x}=\frac{2\left(x-2\right)\left(2x+3\right)}{x^{2}+2x}
Divider begge sider med x^{2}+2x.
a=\frac{2\left(x-2\right)\left(2x+3\right)}{x^{2}+2x}
Division med x^{2}+2x annullerer multiplikationen med x^{2}+2x.
a=\frac{2\left(x-2\right)\left(2x+3\right)}{x\left(x+2\right)}
Divider 2\left(-2+x\right)\left(3+2x\right) med x^{2}+2x.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}