Løs for h (complex solution)
\left\{\begin{matrix}h=-r_{1}^{-\frac{1}{2}}\sqrt{S}\sqrt{r_{0}}w\text{; }h=r_{1}^{-\frac{1}{2}}\sqrt{S}\sqrt{r_{0}}w\text{, }&r_{0}\neq 0\text{ and }r_{1}\neq 0\text{ and }w\neq 0\\h\in \mathrm{C}\text{, }&S=0\text{ and }r_{1}=0\text{ and }w\neq 0\text{ and }r_{0}\neq 0\end{matrix}\right,
Løs for S
S=\frac{\left(\frac{h}{w}\right)^{2}r_{1}}{r_{0}}
r_{0}\neq 0\text{ and }w\neq 0
Løs for h
\left\{\begin{matrix}h=w\sqrt{\frac{Sr_{0}}{r_{1}}}\text{; }h=-w\sqrt{\frac{Sr_{0}}{r_{1}}}\text{, }&\left(r_{1}>0\text{ or }r_{0}<0\text{ or }S\leq 0\right)\text{ and }r_{1}\neq 0\text{ and }\left(r_{0}<0\text{ or }S\geq 0\text{ or }r_{1}<0\right)\text{ and }w\neq 0\text{ and }\left(r_{1}>0\text{ or }S\geq 0\text{ or }r_{0}>0\right)\text{ and }r_{0}\neq 0\text{ and }\left(r_{0}>0\text{ or }r_{1}<0\text{ or }S\leq 0\right)\\h\in \mathrm{R}\text{, }&S=0\text{ and }r_{1}=0\text{ and }w\neq 0\text{ and }r_{0}\neq 0\end{matrix}\right,
Quiz
Algebra
5 problemer svarende til:
S = \frac { h ^ { 2 } } { r _ { 0 } } / w ^ { 2 } \cdot r _ { 1 }
Aktie
Kopieret til udklipsholder
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}