Løs for Q
Q=\frac{182}{3d}
d\neq 0
Løs for d
d=\frac{182}{3Q}
Q\neq 0
Aktie
Kopieret til udklipsholder
Qd=81-\frac{61}{3}
Multiplicer 3 og \frac{61}{9} for at få \frac{61}{3}.
Qd=\frac{182}{3}
Subtraher \frac{61}{3} fra 81 for at få \frac{182}{3}.
dQ=\frac{182}{3}
Ligningen er nu i standardform.
\frac{dQ}{d}=\frac{\frac{182}{3}}{d}
Divider begge sider med d.
Q=\frac{\frac{182}{3}}{d}
Division med d annullerer multiplikationen med d.
Q=\frac{182}{3d}
Divider \frac{182}{3} med d.
Qd=81-\frac{61}{3}
Multiplicer 3 og \frac{61}{9} for at få \frac{61}{3}.
Qd=\frac{182}{3}
Subtraher \frac{61}{3} fra 81 for at få \frac{182}{3}.
\frac{Qd}{Q}=\frac{\frac{182}{3}}{Q}
Divider begge sider med Q.
d=\frac{\frac{182}{3}}{Q}
Division med Q annullerer multiplikationen med Q.
d=\frac{182}{3Q}
Divider \frac{182}{3} med Q.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}