I ( \nu ) d \nu = \frac { 8 \pi \nu ^ { 2 } } { a ^ { 3 } } k T d \nu
Løs for I
\left\{\begin{matrix}I=\frac{8\pi Tk\nu }{a^{3}}\text{, }&a\neq 0\\I\in \mathrm{R}\text{, }&\left(\nu =0\text{ or }d=0\right)\text{ and }a\neq 0\end{matrix}\right,
Løs for T
\left\{\begin{matrix}T=\frac{Ia^{3}}{8\pi k\nu }\text{, }&\nu \neq 0\text{ and }k\neq 0\text{ and }a\neq 0\\T\in \mathrm{R}\text{, }&\left(d=0\text{ and }a\neq 0\right)\text{ or }\left(I=0\text{ and }k=0\text{ and }a\neq 0\right)\text{ or }\left(\nu =0\text{ and }a\neq 0\right)\end{matrix}\right,
Aktie
Kopieret til udklipsholder
I\nu d\nu a^{3}=8\pi \nu ^{2}kTd\nu
Multiplicer begge sider af ligningen med a^{3}.
I\nu ^{2}da^{3}=8\pi \nu ^{2}kTd\nu
Multiplicer \nu og \nu for at få \nu ^{2}.
I\nu ^{2}da^{3}=8\pi \nu ^{3}kTd
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 2 og 1 for at få 3.
d\nu ^{2}a^{3}I=8\pi Tdk\nu ^{3}
Ligningen er nu i standardform.
\frac{d\nu ^{2}a^{3}I}{d\nu ^{2}a^{3}}=\frac{8\pi Tdk\nu ^{3}}{d\nu ^{2}a^{3}}
Divider begge sider med \nu ^{2}da^{3}.
I=\frac{8\pi Tdk\nu ^{3}}{d\nu ^{2}a^{3}}
Division med \nu ^{2}da^{3} annullerer multiplikationen med \nu ^{2}da^{3}.
I=\frac{8\pi Tk\nu }{a^{3}}
Divider 8\pi \nu ^{3}kTd med \nu ^{2}da^{3}.
I\nu d\nu a^{3}=8\pi \nu ^{2}kTd\nu
Multiplicer begge sider af ligningen med a^{3}.
I\nu ^{2}da^{3}=8\pi \nu ^{2}kTd\nu
Multiplicer \nu og \nu for at få \nu ^{2}.
I\nu ^{2}da^{3}=8\pi \nu ^{3}kTd
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 2 og 1 for at få 3.
8\pi \nu ^{3}kTd=I\nu ^{2}da^{3}
Skift side, så alle variable led er placeret på venstre side.
8\pi dk\nu ^{3}T=Id\nu ^{2}a^{3}
Ligningen er nu i standardform.
\frac{8\pi dk\nu ^{3}T}{8\pi dk\nu ^{3}}=\frac{Id\nu ^{2}a^{3}}{8\pi dk\nu ^{3}}
Divider begge sider med 8\pi \nu ^{3}kd.
T=\frac{Id\nu ^{2}a^{3}}{8\pi dk\nu ^{3}}
Division med 8\pi \nu ^{3}kd annullerer multiplikationen med 8\pi \nu ^{3}kd.
T=\frac{Ia^{3}}{8\pi k\nu }
Divider I\nu ^{2}da^{3} med 8\pi \nu ^{3}kd.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}