Løs for I
I=\frac{2d\left(M+7\right)}{3}
Løs for M
\left\{\begin{matrix}M=\frac{3I}{2d}-7\text{, }&d\neq 0\\M\in \mathrm{R}\text{, }&I=0\text{ and }d=0\end{matrix}\right,
Aktie
Kopieret til udklipsholder
I=\left(\frac{14}{3}+\frac{2}{3}M\right)d
Brug fordelingsegenskaben til at multiplicere \frac{2}{3} med 7+M.
I=\frac{14}{3}d+\frac{2}{3}Md
Brug fordelingsegenskaben til at multiplicere \frac{14}{3}+\frac{2}{3}M med d.
I=\left(\frac{14}{3}+\frac{2}{3}M\right)d
Brug fordelingsegenskaben til at multiplicere \frac{2}{3} med 7+M.
I=\frac{14}{3}d+\frac{2}{3}Md
Brug fordelingsegenskaben til at multiplicere \frac{14}{3}+\frac{2}{3}M med d.
\frac{14}{3}d+\frac{2}{3}Md=I
Skift side, så alle variable led er placeret på venstre side.
\frac{2}{3}Md=I-\frac{14}{3}d
Subtraher \frac{14}{3}d fra begge sider.
\frac{2d}{3}M=-\frac{14d}{3}+I
Ligningen er nu i standardform.
\frac{3\times \frac{2d}{3}M}{2d}=\frac{3\left(-\frac{14d}{3}+I\right)}{2d}
Divider begge sider med \frac{2}{3}d.
M=\frac{3\left(-\frac{14d}{3}+I\right)}{2d}
Division med \frac{2}{3}d annullerer multiplikationen med \frac{2}{3}d.
M=\frac{3I}{2d}-7
Divider I-\frac{14d}{3} med \frac{2}{3}d.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}