Løs for I (complex solution)
\left\{\begin{matrix}I=-\frac{5t-D-30}{5st^{2}}\text{, }&s\neq 0\text{ and }t\neq 0\\I\in \mathrm{C}\text{, }&\left(D=-30\text{ and }t=0\right)\text{ or }\left(D=5t-30\text{ and }s=0\right)\end{matrix}\right,
Løs for I
\left\{\begin{matrix}I=-\frac{5t-D-30}{5st^{2}}\text{, }&s\neq 0\text{ and }t\neq 0\\I\in \mathrm{R}\text{, }&\left(D=-30\text{ and }t=0\right)\text{ or }\left(D=5t-30\text{ and }s=0\right)\end{matrix}\right,
Løs for D
D=5\left(Ist^{2}+t-6\right)
Aktie
Kopieret til udklipsholder
-30+5t+5t^{2}sI=D
Skift side, så alle variable led er placeret på venstre side.
5t+5t^{2}sI=D+30
Tilføj 30 på begge sider.
5t^{2}sI=D+30-5t
Subtraher 5t fra begge sider.
5st^{2}I=30+D-5t
Ligningen er nu i standardform.
\frac{5st^{2}I}{5st^{2}}=\frac{30+D-5t}{5st^{2}}
Divider begge sider med 5t^{2}s.
I=\frac{30+D-5t}{5st^{2}}
Division med 5t^{2}s annullerer multiplikationen med 5t^{2}s.
-30+5t+5t^{2}sI=D
Skift side, så alle variable led er placeret på venstre side.
5t+5t^{2}sI=D+30
Tilføj 30 på begge sider.
5t^{2}sI=D+30-5t
Subtraher 5t fra begge sider.
5st^{2}I=30+D-5t
Ligningen er nu i standardform.
\frac{5st^{2}I}{5st^{2}}=\frac{30+D-5t}{5st^{2}}
Divider begge sider med 5t^{2}s.
I=\frac{30+D-5t}{5st^{2}}
Division med 5t^{2}s annullerer multiplikationen med 5t^{2}s.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}