Spring videre til hovedindholdet
Faktoriser
Tick mark Image
Evaluer
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

9\left(x^{2}-x-6\right)
Udfaktoriser 9.
a+b=-1 ab=1\left(-6\right)=-6
Overvej x^{2}-x-6. Faktoriser udtrykket ved gruppering. Først skal udtrykket omskrives som x^{2}+ax+bx-6. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
1,-6 2,-3
Da ab er negative, skal a og b have de modsatte tegn. Da a+b er negativt, har det negative tal en højere absolut værdi end det positive. Vis alle disse heltals par, der giver produkt -6.
1-6=-5 2-3=-1
Beregn summen af hvert par.
a=-3 b=2
Løsningen er det par, der får summen -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Omskriv x^{2}-x-6 som \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Udx i den første og 2 i den anden gruppe.
\left(x-3\right)\left(x+2\right)
Udfaktoriser fællesleddet x-3 ved hjælp af fordelingsegenskaben.
9\left(x-3\right)\left(x+2\right)
Omskriv hele det faktoriserede udtryk.
9x^{2}-9x-54=0
Kvadratisk polynomium kan faktoriseres ved hjælp af transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), hvor x_{1} og x_{2} er løsninger af den kvadratiske ligning ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 9\left(-54\right)}}{2\times 9}
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 9\left(-54\right)}}{2\times 9}
Kvadrér -9.
x=\frac{-\left(-9\right)±\sqrt{81-36\left(-54\right)}}{2\times 9}
Multiplicer -4 gange 9.
x=\frac{-\left(-9\right)±\sqrt{81+1944}}{2\times 9}
Multiplicer -36 gange -54.
x=\frac{-\left(-9\right)±\sqrt{2025}}{2\times 9}
Adder 81 til 1944.
x=\frac{-\left(-9\right)±45}{2\times 9}
Tag kvadratroden af 2025.
x=\frac{9±45}{2\times 9}
Det modsatte af -9 er 9.
x=\frac{9±45}{18}
Multiplicer 2 gange 9.
x=\frac{54}{18}
Nu skal du løse ligningen, x=\frac{9±45}{18} når ± er plus. Adder 9 til 45.
x=3
Divider 54 med 18.
x=-\frac{36}{18}
Nu skal du løse ligningen, x=\frac{9±45}{18} når ± er minus. Subtraher 45 fra 9.
x=-2
Divider -36 med 18.
9x^{2}-9x-54=9\left(x-3\right)\left(x-\left(-2\right)\right)
Faktoriser det oprindelige udtryk ved hjælp af ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstat 3 med x_{1} og -2 med x_{2}.
9x^{2}-9x-54=9\left(x-3\right)\left(x+2\right)
Sørg for at forenkle alle udtryk af formen p-\left(-q\right) til p+q.