Løs for n
n = -\frac{\sqrt{14}}{2} \approx -1,870828693
n = \frac{\sqrt{14}}{2} \approx 1,870828693
Aktie
Kopieret til udklipsholder
8n^{4}-42-16n^{2}=0
Subtraher 16n^{2} fra begge sider.
8t^{2}-16t-42=0
Erstat t for n^{2}.
t=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 8\left(-42\right)}}{2\times 8}
Alle ligninger i formlen ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Erstat 8 med a, -16 med b, og -42 med c i den kvadratiske formel.
t=\frac{16±40}{16}
Lav beregningerne.
t=\frac{7}{2} t=-\frac{3}{2}
Løs ligningen t=\frac{16±40}{16} når ± er plus, og når ± er minus.
n=\frac{\sqrt{14}}{2} n=-\frac{\sqrt{14}}{2}
Siden n=t^{2} bliver løsningerne hentet ved at evaluere n=±\sqrt{t} for positive t.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}