Løs for r
r=-2400000000000000000000000000000000\sqrt{15}i\approx -0-9,295160031 \cdot 10^{33}i
r=2400000000000000000000000000000000\sqrt{15}i\approx 9,295160031 \cdot 10^{33}i
Aktie
Kopieret til udklipsholder
50\times 10^{3}r^{2}=9\times 10^{9}\times 80\times 10^{66}\left(-6\right)\times 10^{-6}
Variablen r må ikke være lig med 0, fordi division med nul ikke er defineret. Multiplicer begge sider af ligningen med r^{2}.
50\times 10^{3}r^{2}=9\times 10^{75}\times 80\left(-6\right)\times 10^{-6}
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 9 og 66 for at få 75.
50\times 10^{3}r^{2}=9\times 10^{69}\times 80\left(-6\right)
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 75 og -6 for at få 69.
50\times 1000r^{2}=9\times 10^{69}\times 80\left(-6\right)
Beregn 10 til potensen af 3, og få 1000.
50000r^{2}=9\times 10^{69}\times 80\left(-6\right)
Multiplicer 50 og 1000 for at få 50000.
50000r^{2}=9\times 1000000000000000000000000000000000000000000000000000000000000000000000\times 80\left(-6\right)
Beregn 10 til potensen af 69, og få 1000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}=9000000000000000000000000000000000000000000000000000000000000000000000\times 80\left(-6\right)
Multiplicer 9 og 1000000000000000000000000000000000000000000000000000000000000000000000 for at få 9000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}=720000000000000000000000000000000000000000000000000000000000000000000000\left(-6\right)
Multiplicer 9000000000000000000000000000000000000000000000000000000000000000000000 og 80 for at få 720000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}=-4320000000000000000000000000000000000000000000000000000000000000000000000
Multiplicer 720000000000000000000000000000000000000000000000000000000000000000000000 og -6 for at få -4320000000000000000000000000000000000000000000000000000000000000000000000.
r^{2}=\frac{-4320000000000000000000000000000000000000000000000000000000000000000000000}{50000}
Divider begge sider med 50000.
r^{2}=-86400000000000000000000000000000000000000000000000000000000000000000
Divider -4320000000000000000000000000000000000000000000000000000000000000000000000 med 50000 for at få -86400000000000000000000000000000000000000000000000000000000000000000.
r=2400000000000000000000000000000000\sqrt{15}i r=-2400000000000000000000000000000000\sqrt{15}i
Ligningen er nu løst.
50\times 10^{3}r^{2}=9\times 10^{9}\times 80\times 10^{66}\left(-6\right)\times 10^{-6}
Variablen r må ikke være lig med 0, fordi division med nul ikke er defineret. Multiplicer begge sider af ligningen med r^{2}.
50\times 10^{3}r^{2}=9\times 10^{75}\times 80\left(-6\right)\times 10^{-6}
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 9 og 66 for at få 75.
50\times 10^{3}r^{2}=9\times 10^{69}\times 80\left(-6\right)
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 75 og -6 for at få 69.
50\times 1000r^{2}=9\times 10^{69}\times 80\left(-6\right)
Beregn 10 til potensen af 3, og få 1000.
50000r^{2}=9\times 10^{69}\times 80\left(-6\right)
Multiplicer 50 og 1000 for at få 50000.
50000r^{2}=9\times 1000000000000000000000000000000000000000000000000000000000000000000000\times 80\left(-6\right)
Beregn 10 til potensen af 69, og få 1000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}=9000000000000000000000000000000000000000000000000000000000000000000000\times 80\left(-6\right)
Multiplicer 9 og 1000000000000000000000000000000000000000000000000000000000000000000000 for at få 9000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}=720000000000000000000000000000000000000000000000000000000000000000000000\left(-6\right)
Multiplicer 9000000000000000000000000000000000000000000000000000000000000000000000 og 80 for at få 720000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}=-4320000000000000000000000000000000000000000000000000000000000000000000000
Multiplicer 720000000000000000000000000000000000000000000000000000000000000000000000 og -6 for at få -4320000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}+4320000000000000000000000000000000000000000000000000000000000000000000000=0
Tilføj 4320000000000000000000000000000000000000000000000000000000000000000000000 på begge sider.
r=\frac{0±\sqrt{0^{2}-4\times 50000\times 4320000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 50000}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 50000 med a, 0 med b og 4320000000000000000000000000000000000000000000000000000000000000000000000 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\times 50000\times 4320000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 50000}
Kvadrér 0.
r=\frac{0±\sqrt{-200000\times 4320000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 50000}
Multiplicer -4 gange 50000.
r=\frac{0±\sqrt{-864000000000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 50000}
Multiplicer -200000 gange 4320000000000000000000000000000000000000000000000000000000000000000000000.
r=\frac{0±240000000000000000000000000000000000000\sqrt{15}i}{2\times 50000}
Tag kvadratroden af -864000000000000000000000000000000000000000000000000000000000000000000000000000.
r=\frac{0±240000000000000000000000000000000000000\sqrt{15}i}{100000}
Multiplicer 2 gange 50000.
r=2400000000000000000000000000000000\sqrt{15}i
Nu skal du løse ligningen, r=\frac{0±240000000000000000000000000000000000000\sqrt{15}i}{100000} når ± er plus.
r=-2400000000000000000000000000000000\sqrt{15}i
Nu skal du løse ligningen, r=\frac{0±240000000000000000000000000000000000000\sqrt{15}i}{100000} når ± er minus.
r=2400000000000000000000000000000000\sqrt{15}i r=-2400000000000000000000000000000000\sqrt{15}i
Ligningen er nu løst.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}