Løs for x
x=-2
x=1
Graf
Aktie
Kopieret til udklipsholder
4x^{2}+8x-4x=8
Subtraher 4x fra begge sider.
4x^{2}+4x=8
Kombiner 8x og -4x for at få 4x.
4x^{2}+4x-8=0
Subtraher 8 fra begge sider.
x^{2}+x-2=0
Divider begge sider med 4.
a+b=1 ab=1\left(-2\right)=-2
Hvis du vil løse ligningen, skal du faktor venstre side ved at gruppere. For det første skal venstre side ikke skrives som x^{2}+ax+bx-2. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
a=-1 b=2
Da ab er negative, skal a og b have de modsatte tegn. Da a+b er positivt, har det positive tal en større absolut værdi end det negative. Det eneste par af den slags er systemløsningen.
\left(x^{2}-x\right)+\left(2x-2\right)
Omskriv x^{2}+x-2 som \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
Udx i den første og 2 i den anden gruppe.
\left(x-1\right)\left(x+2\right)
Udfaktoriser fællesleddet x-1 ved hjælp af fordelingsegenskaben.
x=1 x=-2
Løs x-1=0 og x+2=0 for at finde Lignings løsninger.
4x^{2}+8x-4x=8
Subtraher 4x fra begge sider.
4x^{2}+4x=8
Kombiner 8x og -4x for at få 4x.
4x^{2}+4x-8=0
Subtraher 8 fra begge sider.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 4 med a, 4 med b og -8 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-8\right)}}{2\times 4}
Kvadrér 4.
x=\frac{-4±\sqrt{16-16\left(-8\right)}}{2\times 4}
Multiplicer -4 gange 4.
x=\frac{-4±\sqrt{16+128}}{2\times 4}
Multiplicer -16 gange -8.
x=\frac{-4±\sqrt{144}}{2\times 4}
Adder 16 til 128.
x=\frac{-4±12}{2\times 4}
Tag kvadratroden af 144.
x=\frac{-4±12}{8}
Multiplicer 2 gange 4.
x=\frac{8}{8}
Nu skal du løse ligningen, x=\frac{-4±12}{8} når ± er plus. Adder -4 til 12.
x=1
Divider 8 med 8.
x=-\frac{16}{8}
Nu skal du løse ligningen, x=\frac{-4±12}{8} når ± er minus. Subtraher 12 fra -4.
x=-2
Divider -16 med 8.
x=1 x=-2
Ligningen er nu løst.
4x^{2}+8x-4x=8
Subtraher 4x fra begge sider.
4x^{2}+4x=8
Kombiner 8x og -4x for at få 4x.
\frac{4x^{2}+4x}{4}=\frac{8}{4}
Divider begge sider med 4.
x^{2}+\frac{4}{4}x=\frac{8}{4}
Division med 4 annullerer multiplikationen med 4.
x^{2}+x=\frac{8}{4}
Divider 4 med 4.
x^{2}+x=2
Divider 8 med 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
Divider 1, som er koefficienten for leddet x, med 2 for at få \frac{1}{2}. Adder derefter kvadratet af \frac{1}{2} på begge sider af ligningen. Dette trin gør venstre side af ligningen til et perfekt kvadrat.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
Du kan kvadrere \frac{1}{2} ved at kvadrere både tælleren og nævneren i brøken.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
Adder 2 til \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
Faktor x^{2}+x+\frac{1}{4}. Generelt kan det altid faktoreres som \left(x+\frac{b}{2}\right)^{2}, når x^{2}+bx+c er et perfekt kvadrat.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tag kvadratroden af begge sider i ligningen.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
Forenkling.
x=1 x=-2
Subtraher \frac{1}{2} fra begge sider af ligningen.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}