Løs for t
t=\frac{9}{4\Delta }
\Delta \neq 0
Løs for Δ
\Delta =\frac{9}{4t}
t\neq 0
Aktie
Kopieret til udklipsholder
36=16\Delta t
Ethvert tal plus nul giver tallet selv.
16\Delta t=36
Skift side, så alle variable led er placeret på venstre side.
\frac{16\Delta t}{16\Delta }=\frac{36}{16\Delta }
Divider begge sider med 16\Delta .
t=\frac{36}{16\Delta }
Division med 16\Delta annullerer multiplikationen med 16\Delta .
t=\frac{9}{4\Delta }
Divider 36 med 16\Delta .
36=16\Delta t
Ethvert tal plus nul giver tallet selv.
16\Delta t=36
Skift side, så alle variable led er placeret på venstre side.
16t\Delta =36
Ligningen er nu i standardform.
\frac{16t\Delta }{16t}=\frac{36}{16t}
Divider begge sider med 16t.
\Delta =\frac{36}{16t}
Division med 16t annullerer multiplikationen med 16t.
\Delta =\frac{9}{4t}
Divider 36 med 16t.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}