Løs for a
a=-\frac{e}{c+1}
c\neq -1
Løs for c
c=-\frac{a+e}{a}
a\neq 0
Aktie
Kopieret til udklipsholder
3a-ac=4a+e
Subtraher ac fra begge sider.
3a-ac-4a=e
Subtraher 4a fra begge sider.
-a-ac=e
Kombiner 3a og -4a for at få -a.
\left(-1-c\right)a=e
Kombiner alle led med a.
\left(-c-1\right)a=e
Ligningen er nu i standardform.
\frac{\left(-c-1\right)a}{-c-1}=\frac{e}{-c-1}
Divider begge sider med -1-c.
a=\frac{e}{-c-1}
Division med -1-c annullerer multiplikationen med -1-c.
a=-\frac{e}{c+1}
Divider e med -1-c.
ac+4a+e=3a
Skift side, så alle variable led er placeret på venstre side.
ac+e=3a-4a
Subtraher 4a fra begge sider.
ac+e=-a
Kombiner 3a og -4a for at få -a.
ac=-a-e
Subtraher e fra begge sider.
\frac{ac}{a}=\frac{-a-e}{a}
Divider begge sider med a.
c=\frac{-a-e}{a}
Division med a annullerer multiplikationen med a.
c=-1-\frac{e}{a}
Divider -a-e med a.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}