Løs for x
x=\frac{1}{3}+\frac{\sqrt{2}}{2y_{1}}
y_{1}\neq 0
Løs for y_1
y_{1}=\frac{3\sqrt{2}}{2\left(3x-1\right)}
x\neq \frac{1}{3}
Graf
Aktie
Kopieret til udklipsholder
2y_{1}x-\frac{2}{3}y_{1}-\sqrt{2}=0
Brug fordelingsegenskaben til at multiplicere 2y_{1} med x-\frac{1}{3}.
2y_{1}x-\sqrt{2}=\frac{2}{3}y_{1}
Tilføj \frac{2}{3}y_{1} på begge sider. Ethvert tal plus nul giver tallet selv.
2y_{1}x=\frac{2}{3}y_{1}+\sqrt{2}
Tilføj \sqrt{2} på begge sider.
2y_{1}x=\frac{2y_{1}}{3}+\sqrt{2}
Ligningen er nu i standardform.
\frac{2y_{1}x}{2y_{1}}=\frac{\frac{2y_{1}}{3}+\sqrt{2}}{2y_{1}}
Divider begge sider med 2y_{1}.
x=\frac{\frac{2y_{1}}{3}+\sqrt{2}}{2y_{1}}
Division med 2y_{1} annullerer multiplikationen med 2y_{1}.
x=\frac{1}{3}+\frac{\sqrt{2}}{2y_{1}}
Divider \frac{2y_{1}}{3}+\sqrt{2} med 2y_{1}.
2y_{1}x-\frac{2}{3}y_{1}-\sqrt{2}=0
Brug fordelingsegenskaben til at multiplicere 2y_{1} med x-\frac{1}{3}.
2y_{1}x-\frac{2}{3}y_{1}=\sqrt{2}
Tilføj \sqrt{2} på begge sider. Ethvert tal plus nul giver tallet selv.
\left(2x-\frac{2}{3}\right)y_{1}=\sqrt{2}
Kombiner alle led med y_{1}.
\frac{\left(2x-\frac{2}{3}\right)y_{1}}{2x-\frac{2}{3}}=\frac{\sqrt{2}}{2x-\frac{2}{3}}
Divider begge sider med 2x-\frac{2}{3}.
y_{1}=\frac{\sqrt{2}}{2x-\frac{2}{3}}
Division med 2x-\frac{2}{3} annullerer multiplikationen med 2x-\frac{2}{3}.
y_{1}=\frac{3\sqrt{2}}{2\left(3x-1\right)}
Divider \sqrt{2} med 2x-\frac{2}{3}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}