Løs for x (complex solution)
x=-\frac{4^{\frac{2}{3}}\left(1+\sqrt{3}i\right)\left(-\sqrt{3}\sqrt[3]{3\sqrt{137145}-1111}i-\sqrt{3}\sqrt[3]{4}i-\sqrt[3]{3\sqrt{137145}-1111}+2\sqrt[3]{-3\sqrt{137145}-1111}+\sqrt[3]{4}\right)}{48}\approx 0,996187925-2,373032005i
x=\frac{4^{\frac{2}{3}}\left(\sqrt[3]{3\sqrt{137145}-1111}+\sqrt[3]{-3\sqrt{137145}-1111}-\sqrt[3]{4}\right)}{12}\approx 1,057012038+2,408148823i
x=-\frac{4^{\frac{2}{3}}\left(-\sqrt{3}i+1\right)\left(-\sqrt[3]{3\sqrt{137145}-1111}+2\sqrt[3]{-3\sqrt{137145}-1111}+\sqrt[3]{4}+\sqrt{3}\sqrt[3]{3\sqrt{137145}-1111}i+\sqrt{3}\sqrt[3]{4}i\right)}{48}\approx -3,053199963-0,035116818i
Løs for x
x=-\frac{4^{\frac{2}{3}}\sqrt[3]{3\sqrt{137145}+1111}}{12}-\frac{4^{\frac{2}{3}}\sqrt[3]{1111-3\sqrt{137145}}}{12}-\frac{1}{3}\approx -3,114024076
Graf
Aktie
Kopieret til udklipsholder
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}