Løs for x
x=-2
x = \frac{7}{2} = 3\frac{1}{2} = 3,5
Graf
Aktie
Kopieret til udklipsholder
a+b=-3 ab=2\left(-14\right)=-28
Hvis du vil løse ligningen, skal du faktor venstre side ved at gruppere. For det første skal venstre side ikke skrives som 2x^{2}+ax+bx-14. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
1,-28 2,-14 4,-7
Da ab er negative, skal a og b have de modsatte tegn. Da a+b er negativt, har det negative tal en højere absolut værdi end det positive. Vis alle disse heltals par, der giver produkt -28.
1-28=-27 2-14=-12 4-7=-3
Beregn summen af hvert par.
a=-7 b=4
Løsningen er det par, der får summen -3.
\left(2x^{2}-7x\right)+\left(4x-14\right)
Omskriv 2x^{2}-3x-14 som \left(2x^{2}-7x\right)+\left(4x-14\right).
x\left(2x-7\right)+2\left(2x-7\right)
Udx i den første og 2 i den anden gruppe.
\left(2x-7\right)\left(x+2\right)
Udfaktoriser fællesleddet 2x-7 ved hjælp af fordelingsegenskaben.
x=\frac{7}{2} x=-2
Løs 2x-7=0 og x+2=0 for at finde Lignings løsninger.
2x^{2}-3x-14=0
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-14\right)}}{2\times 2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 2 med a, -3 med b og -14 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-14\right)}}{2\times 2}
Kvadrér -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-14\right)}}{2\times 2}
Multiplicer -4 gange 2.
x=\frac{-\left(-3\right)±\sqrt{9+112}}{2\times 2}
Multiplicer -8 gange -14.
x=\frac{-\left(-3\right)±\sqrt{121}}{2\times 2}
Adder 9 til 112.
x=\frac{-\left(-3\right)±11}{2\times 2}
Tag kvadratroden af 121.
x=\frac{3±11}{2\times 2}
Det modsatte af -3 er 3.
x=\frac{3±11}{4}
Multiplicer 2 gange 2.
x=\frac{14}{4}
Nu skal du løse ligningen, x=\frac{3±11}{4} når ± er plus. Adder 3 til 11.
x=\frac{7}{2}
Reducer fraktionen \frac{14}{4} til de laveste led ved at udtrække og annullere 2.
x=-\frac{8}{4}
Nu skal du løse ligningen, x=\frac{3±11}{4} når ± er minus. Subtraher 11 fra 3.
x=-2
Divider -8 med 4.
x=\frac{7}{2} x=-2
Ligningen er nu løst.
2x^{2}-3x-14=0
Kvadratligninger som denne kan løses ved at fuldføre kvadratet. Ligningen skal først være i formlen x^{2}+bx=c for at fuldføre kvadratet.
2x^{2}-3x-14-\left(-14\right)=-\left(-14\right)
Adder 14 på begge sider af ligningen.
2x^{2}-3x=-\left(-14\right)
Hvis -14 subtraheres fra sig selv, giver det 0.
2x^{2}-3x=14
Subtraher -14 fra 0.
\frac{2x^{2}-3x}{2}=\frac{14}{2}
Divider begge sider med 2.
x^{2}-\frac{3}{2}x=\frac{14}{2}
Division med 2 annullerer multiplikationen med 2.
x^{2}-\frac{3}{2}x=7
Divider 14 med 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=7+\left(-\frac{3}{4}\right)^{2}
Divider -\frac{3}{2}, som er koefficienten for leddet x, med 2 for at få -\frac{3}{4}. Adder derefter kvadratet af -\frac{3}{4} på begge sider af ligningen. Dette trin gør venstre side af ligningen til et perfekt kvadrat.
x^{2}-\frac{3}{2}x+\frac{9}{16}=7+\frac{9}{16}
Du kan kvadrere -\frac{3}{4} ved at kvadrere både tælleren og nævneren i brøken.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{121}{16}
Adder 7 til \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=\frac{121}{16}
Faktor x^{2}-\frac{3}{2}x+\frac{9}{16}. Generelt kan det altid faktoreres som \left(x+\frac{b}{2}\right)^{2}, når x^{2}+bx+c er et perfekt kvadrat.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Tag kvadratroden af begge sider i ligningen.
x-\frac{3}{4}=\frac{11}{4} x-\frac{3}{4}=-\frac{11}{4}
Forenkling.
x=\frac{7}{2} x=-2
Adder \frac{3}{4} på begge sider af ligningen.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}