Spring videre til hovedindholdet
Faktoriser
Tick mark Image
Evaluer
Tick mark Image

Lignende problemer fra websøgning

Aktie

p+q=5 pq=2\left(-12\right)=-24
Faktoriser udtrykket ved gruppering. Først skal udtrykket omskrives som 2a^{2}+pa+qa-12. Hvis du vil finde p og q, skal du konfigurere et system, der skal løses.
-1,24 -2,12 -3,8 -4,6
Da pq er negative, skal p og q have de modsatte tegn. Da p+q er positivt, har det positive tal en større absolut værdi end det negative. Vis alle disse heltals par, der giver produkt -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Beregn summen af hvert par.
p=-3 q=8
Løsningen er det par, der får summen 5.
\left(2a^{2}-3a\right)+\left(8a-12\right)
Omskriv 2a^{2}+5a-12 som \left(2a^{2}-3a\right)+\left(8a-12\right).
a\left(2a-3\right)+4\left(2a-3\right)
Uda i den første og 4 i den anden gruppe.
\left(2a-3\right)\left(a+4\right)
Udfaktoriser fællesleddet 2a-3 ved hjælp af fordelingsegenskaben.
2a^{2}+5a-12=0
Kvadratisk polynomium kan faktoriseres ved hjælp af transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), hvor x_{1} og x_{2} er løsninger af den kvadratiske ligning ax^{2}+bx+c=0.
a=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
a=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
Kvadrér 5.
a=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
Multiplicer -4 gange 2.
a=\frac{-5±\sqrt{25+96}}{2\times 2}
Multiplicer -8 gange -12.
a=\frac{-5±\sqrt{121}}{2\times 2}
Adder 25 til 96.
a=\frac{-5±11}{2\times 2}
Tag kvadratroden af 121.
a=\frac{-5±11}{4}
Multiplicer 2 gange 2.
a=\frac{6}{4}
Nu skal du løse ligningen, a=\frac{-5±11}{4} når ± er plus. Adder -5 til 11.
a=\frac{3}{2}
Reducer fraktionen \frac{6}{4} til de laveste led ved at udtrække og annullere 2.
a=-\frac{16}{4}
Nu skal du løse ligningen, a=\frac{-5±11}{4} når ± er minus. Subtraher 11 fra -5.
a=-4
Divider -16 med 4.
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a-\left(-4\right)\right)
Faktoriser det oprindelige udtryk ved hjælp af ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstat \frac{3}{2} med x_{1} og -4 med x_{2}.
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a+4\right)
Sørg for at forenkle alle udtryk af formen p-\left(-q\right) til p+q.
2a^{2}+5a-12=2\times \frac{2a-3}{2}\left(a+4\right)
Subtraher \frac{3}{2} fra a ved at finde en fællesnævner og subtrahere tællerne. Reducer derefter brøken til de lavest mulige led, hvis det er muligt.
2a^{2}+5a-12=\left(2a-3\right)\left(a+4\right)
Ophæv den største fælles faktor 2 i 2 og 2.