Løs for a
a\in \left(-\infty,0\right)\cup \left(\frac{1}{2},\infty\right)
Aktie
Kopieret til udklipsholder
16a^{2}-4a\left(2a+1\right)>0
Multiplicer -1 og 4 for at få -4.
16a^{2}-8a^{2}-4a>0
Brug fordelingsegenskaben til at multiplicere -4a med 2a+1.
8a^{2}-4a>0
Kombiner 16a^{2} og -8a^{2} for at få 8a^{2}.
4a\left(2a-1\right)>0
Udfaktoriser a.
a<0 a-\frac{1}{2}<0
For at produktet bliver positivt, skal a og a-\frac{1}{2} begge være negative eller begge være positive. Overvej sagen, når a og a-\frac{1}{2} begge er negative.
a<0
Løsningen, der opfylder begge uligheder, er a<0.
a-\frac{1}{2}>0 a>0
Overvej sagen, når a og a-\frac{1}{2} begge er positive.
a>\frac{1}{2}
Løsningen, der opfylder begge uligheder, er a>\frac{1}{2}.
a<0\text{; }a>\frac{1}{2}
Den endelige løsning er foreningen af de hentede løsninger.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}