Spring videre til hovedindholdet
Løs for x
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

x^{2}=\frac{10}{12}
Divider begge sider med 12.
x^{2}=\frac{5}{6}
Reducer fraktionen \frac{10}{12} til de laveste led ved at udtrække og annullere 2.
x=\frac{\sqrt{30}}{6} x=-\frac{\sqrt{30}}{6}
Tag kvadratroden af begge sider i ligningen.
x^{2}=\frac{10}{12}
Divider begge sider med 12.
x^{2}=\frac{5}{6}
Reducer fraktionen \frac{10}{12} til de laveste led ved at udtrække og annullere 2.
x^{2}-\frac{5}{6}=0
Subtraher \frac{5}{6} fra begge sider.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{5}{6}\right)}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, 0 med b og -\frac{5}{6} med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{5}{6}\right)}}{2}
Kvadrér 0.
x=\frac{0±\sqrt{\frac{10}{3}}}{2}
Multiplicer -4 gange -\frac{5}{6}.
x=\frac{0±\frac{\sqrt{30}}{3}}{2}
Tag kvadratroden af \frac{10}{3}.
x=\frac{\sqrt{30}}{6}
Nu skal du løse ligningen, x=\frac{0±\frac{\sqrt{30}}{3}}{2} når ± er plus.
x=-\frac{\sqrt{30}}{6}
Nu skal du løse ligningen, x=\frac{0±\frac{\sqrt{30}}{3}}{2} når ± er minus.
x=\frac{\sqrt{30}}{6} x=-\frac{\sqrt{30}}{6}
Ligningen er nu løst.