Løs for x
x = \frac{21 \sqrt{1105}}{221} \approx 3,158698397
x = -\frac{21 \sqrt{1105}}{221} \approx -3,158698397
Graf
Aktie
Kopieret til udklipsholder
11025=\left(9x\right)^{2}+\left(32x\right)^{2}
Beregn 105 til potensen af 2, og få 11025.
11025=9^{2}x^{2}+\left(32x\right)^{2}
Udvid \left(9x\right)^{2}.
11025=81x^{2}+\left(32x\right)^{2}
Beregn 9 til potensen af 2, og få 81.
11025=81x^{2}+32^{2}x^{2}
Udvid \left(32x\right)^{2}.
11025=81x^{2}+1024x^{2}
Beregn 32 til potensen af 2, og få 1024.
11025=1105x^{2}
Kombiner 81x^{2} og 1024x^{2} for at få 1105x^{2}.
1105x^{2}=11025
Skift side, så alle variable led er placeret på venstre side.
x^{2}=\frac{11025}{1105}
Divider begge sider med 1105.
x^{2}=\frac{2205}{221}
Reducer fraktionen \frac{11025}{1105} til de laveste led ved at udtrække og annullere 5.
x=\frac{21\sqrt{1105}}{221} x=-\frac{21\sqrt{1105}}{221}
Tag kvadratroden af begge sider i ligningen.
11025=\left(9x\right)^{2}+\left(32x\right)^{2}
Beregn 105 til potensen af 2, og få 11025.
11025=9^{2}x^{2}+\left(32x\right)^{2}
Udvid \left(9x\right)^{2}.
11025=81x^{2}+\left(32x\right)^{2}
Beregn 9 til potensen af 2, og få 81.
11025=81x^{2}+32^{2}x^{2}
Udvid \left(32x\right)^{2}.
11025=81x^{2}+1024x^{2}
Beregn 32 til potensen af 2, og få 1024.
11025=1105x^{2}
Kombiner 81x^{2} og 1024x^{2} for at få 1105x^{2}.
1105x^{2}=11025
Skift side, så alle variable led er placeret på venstre side.
1105x^{2}-11025=0
Subtraher 11025 fra begge sider.
x=\frac{0±\sqrt{0^{2}-4\times 1105\left(-11025\right)}}{2\times 1105}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1105 med a, 0 med b og -11025 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 1105\left(-11025\right)}}{2\times 1105}
Kvadrér 0.
x=\frac{0±\sqrt{-4420\left(-11025\right)}}{2\times 1105}
Multiplicer -4 gange 1105.
x=\frac{0±\sqrt{48730500}}{2\times 1105}
Multiplicer -4420 gange -11025.
x=\frac{0±210\sqrt{1105}}{2\times 1105}
Tag kvadratroden af 48730500.
x=\frac{0±210\sqrt{1105}}{2210}
Multiplicer 2 gange 1105.
x=\frac{21\sqrt{1105}}{221}
Nu skal du løse ligningen, x=\frac{0±210\sqrt{1105}}{2210} når ± er plus.
x=-\frac{21\sqrt{1105}}{221}
Nu skal du løse ligningen, x=\frac{0±210\sqrt{1105}}{2210} når ± er minus.
x=\frac{21\sqrt{1105}}{221} x=-\frac{21\sqrt{1105}}{221}
Ligningen er nu løst.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}