Evaluer
\frac{1010an}{7}+6a-13b
Faktoriser
\frac{1010an+42a-91b}{7}
Aktie
Kopieret til udklipsholder
\frac{1010na}{7}-9b+6a-4b
Udtryk \frac{1010n}{7}a som en enkelt brøk.
\frac{1010na}{7}-13b+6a
Kombiner -9b og -4b for at få -13b.
\frac{1010na}{7}+\frac{7\left(-13b+6a\right)}{7}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Multiplicer -13b+6a gange \frac{7}{7}.
\frac{1010na+7\left(-13b+6a\right)}{7}
Da \frac{1010na}{7} og \frac{7\left(-13b+6a\right)}{7} har den samme fællesnævner, skal du addere dem ved at tilføje deres tællere.
\frac{1010na-91b+42a}{7}
Lav multiplikationerne i 1010na+7\left(-13b+6a\right).
\frac{1010na-63b+42a-28b}{7}
Udfaktoriser \frac{1}{7}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}