Løs for p
p=3\sqrt{381}\approx 58,557663888
p=-3\sqrt{381}\approx -58,557663888
Aktie
Kopieret til udklipsholder
10000+100+8=3p^{2}-190+11
Beregn 100 til potensen af 2, og få 10000.
10100+8=3p^{2}-190+11
Tilføj 10000 og 100 for at få 10100.
10108=3p^{2}-190+11
Tilføj 10100 og 8 for at få 10108.
10108=3p^{2}-179
Tilføj -190 og 11 for at få -179.
3p^{2}-179=10108
Skift side, så alle variable led er placeret på venstre side.
3p^{2}=10108+179
Tilføj 179 på begge sider.
3p^{2}=10287
Tilføj 10108 og 179 for at få 10287.
p^{2}=\frac{10287}{3}
Divider begge sider med 3.
p^{2}=3429
Divider 10287 med 3 for at få 3429.
p=3\sqrt{381} p=-3\sqrt{381}
Tag kvadratroden af begge sider i ligningen.
10000+100+8=3p^{2}-190+11
Beregn 100 til potensen af 2, og få 10000.
10100+8=3p^{2}-190+11
Tilføj 10000 og 100 for at få 10100.
10108=3p^{2}-190+11
Tilføj 10100 og 8 for at få 10108.
10108=3p^{2}-179
Tilføj -190 og 11 for at få -179.
3p^{2}-179=10108
Skift side, så alle variable led er placeret på venstre side.
3p^{2}-179-10108=0
Subtraher 10108 fra begge sider.
3p^{2}-10287=0
Subtraher 10108 fra -179 for at få -10287.
p=\frac{0±\sqrt{0^{2}-4\times 3\left(-10287\right)}}{2\times 3}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 3 med a, 0 med b og -10287 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 3\left(-10287\right)}}{2\times 3}
Kvadrér 0.
p=\frac{0±\sqrt{-12\left(-10287\right)}}{2\times 3}
Multiplicer -4 gange 3.
p=\frac{0±\sqrt{123444}}{2\times 3}
Multiplicer -12 gange -10287.
p=\frac{0±18\sqrt{381}}{2\times 3}
Tag kvadratroden af 123444.
p=\frac{0±18\sqrt{381}}{6}
Multiplicer 2 gange 3.
p=3\sqrt{381}
Nu skal du løse ligningen, p=\frac{0±18\sqrt{381}}{6} når ± er plus.
p=-3\sqrt{381}
Nu skal du løse ligningen, p=\frac{0±18\sqrt{381}}{6} når ± er minus.
p=3\sqrt{381} p=-3\sqrt{381}
Ligningen er nu løst.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}