Spring videre til hovedindholdet
Løs for x
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

-xx+x\times 2=-1
Variablen x må ikke være lig med 0, fordi division med nul ikke er defineret. Multiplicer begge sider af ligningen med x.
-x^{2}+x\times 2=-1
Multiplicer x og x for at få x^{2}.
-x^{2}+x\times 2+1=0
Tilføj 1 på begge sider.
-x^{2}+2x+1=0
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)}}{2\left(-1\right)}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat -1 med a, 2 med b og 1 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)}}{2\left(-1\right)}
Kvadrér 2.
x=\frac{-2±\sqrt{4+4}}{2\left(-1\right)}
Multiplicer -4 gange -1.
x=\frac{-2±\sqrt{8}}{2\left(-1\right)}
Adder 4 til 4.
x=\frac{-2±2\sqrt{2}}{2\left(-1\right)}
Tag kvadratroden af 8.
x=\frac{-2±2\sqrt{2}}{-2}
Multiplicer 2 gange -1.
x=\frac{2\sqrt{2}-2}{-2}
Nu skal du løse ligningen, x=\frac{-2±2\sqrt{2}}{-2} når ± er plus. Adder -2 til 2\sqrt{2}.
x=1-\sqrt{2}
Divider -2+2\sqrt{2} med -2.
x=\frac{-2\sqrt{2}-2}{-2}
Nu skal du løse ligningen, x=\frac{-2±2\sqrt{2}}{-2} når ± er minus. Subtraher 2\sqrt{2} fra -2.
x=\sqrt{2}+1
Divider -2-2\sqrt{2} med -2.
x=1-\sqrt{2} x=\sqrt{2}+1
Ligningen er nu løst.
-xx+x\times 2=-1
Variablen x må ikke være lig med 0, fordi division med nul ikke er defineret. Multiplicer begge sider af ligningen med x.
-x^{2}+x\times 2=-1
Multiplicer x og x for at få x^{2}.
-x^{2}+2x=-1
Kvadratligninger som denne kan løses ved at fuldføre kvadratet. Ligningen skal først være i formlen x^{2}+bx=c for at fuldføre kvadratet.
\frac{-x^{2}+2x}{-1}=-\frac{1}{-1}
Divider begge sider med -1.
x^{2}+\frac{2}{-1}x=-\frac{1}{-1}
Division med -1 annullerer multiplikationen med -1.
x^{2}-2x=-\frac{1}{-1}
Divider 2 med -1.
x^{2}-2x=1
Divider -1 med -1.
x^{2}-2x+1=1+1
Divider -2, som er koefficienten for leddet x, med 2 for at få -1. Adder derefter kvadratet af -1 på begge sider af ligningen. Dette trin gør venstre side af ligningen til et perfekt kvadrat.
x^{2}-2x+1=2
Adder 1 til 1.
\left(x-1\right)^{2}=2
Faktor x^{2}-2x+1. Generelt kan det altid faktoreres som \left(x+\frac{b}{2}\right)^{2}, når x^{2}+bx+c er et perfekt kvadrat.
\sqrt{\left(x-1\right)^{2}}=\sqrt{2}
Tag kvadratroden af begge sider i ligningen.
x-1=\sqrt{2} x-1=-\sqrt{2}
Forenkling.
x=\sqrt{2}+1 x=1-\sqrt{2}
Adder 1 på begge sider af ligningen.