Løs for x
x=4
Graf
Aktie
Kopieret til udklipsholder
x^{2}-8x+16=0
Brug binomialsætningen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til at udvide \left(x-4\right)^{2}.
a+b=-8 ab=16
Faktor x^{2}-8x+16 ved hjælp af formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) for at løse ligningen. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
-1,-16 -2,-8 -4,-4
Da ab er positivt, skal a og b have samme fortegn. Da a+b er negative, er a og b begge negative. Vis alle disse heltals par, der giver produkt 16.
-1-16=-17 -2-8=-10 -4-4=-8
Beregn summen af hvert par.
a=-4 b=-4
Løsningen er det par, der får summen -8.
\left(x-4\right)\left(x-4\right)
Omskriv det faktoriserede udtryk \left(x+a\right)\left(x+b\right) ved hjælp af de opnåede værdier.
\left(x-4\right)^{2}
Omskriv som et binomialt kvadrat.
x=4
For at finde Ligningsløsningen skal du løse x-4=0.
x^{2}-8x+16=0
Brug binomialsætningen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til at udvide \left(x-4\right)^{2}.
a+b=-8 ab=1\times 16=16
Hvis du vil løse ligningen, skal du faktor venstre side ved at gruppere. For det første skal venstre side ikke skrives som x^{2}+ax+bx+16. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
-1,-16 -2,-8 -4,-4
Da ab er positivt, skal a og b have samme fortegn. Da a+b er negative, er a og b begge negative. Vis alle disse heltals par, der giver produkt 16.
-1-16=-17 -2-8=-10 -4-4=-8
Beregn summen af hvert par.
a=-4 b=-4
Løsningen er det par, der får summen -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Omskriv x^{2}-8x+16 som \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
Udx i den første og -4 i den anden gruppe.
\left(x-4\right)\left(x-4\right)
Udfaktoriser fællesleddet x-4 ved hjælp af fordelingsegenskaben.
\left(x-4\right)^{2}
Omskriv som et binomialt kvadrat.
x=4
For at finde Ligningsløsningen skal du løse x-4=0.
x^{2}-8x+16=0
Brug binomialsætningen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til at udvide \left(x-4\right)^{2}.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, -8 med b og 16 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Kvadrér -8.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Multiplicer -4 gange 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Adder 64 til -64.
x=-\frac{-8}{2}
Tag kvadratroden af 0.
x=\frac{8}{2}
Det modsatte af -8 er 8.
x=4
Divider 8 med 2.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Tag kvadratroden af begge sider i ligningen.
x-4=0 x-4=0
Forenkling.
x=4 x=4
Adder 4 på begge sider af ligningen.
x=4
Ligningen er nu løst. Løsningerne er de samme.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}