Spring videre til hovedindholdet
Løs for x
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

x^{2}-4x+4=9
Brug binomialsætningen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til at udvide \left(x-2\right)^{2}.
x^{2}-4x+4-9=0
Subtraher 9 fra begge sider.
x^{2}-4x-5=0
Subtraher 9 fra 4 for at få -5.
a+b=-4 ab=-5
Faktor x^{2}-4x-5 ved hjælp af formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) for at løse ligningen. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
a=-5 b=1
Da ab er negative, skal a og b have de modsatte tegn. Da a+b er negativt, har det negative tal en højere absolut værdi end det positive. Det eneste par af den slags er systemløsningen.
\left(x-5\right)\left(x+1\right)
Omskriv det faktoriserede udtryk \left(x+a\right)\left(x+b\right) ved hjælp af de opnåede værdier.
x=5 x=-1
Løs x-5=0 og x+1=0 for at finde Lignings løsninger.
x^{2}-4x+4=9
Brug binomialsætningen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til at udvide \left(x-2\right)^{2}.
x^{2}-4x+4-9=0
Subtraher 9 fra begge sider.
x^{2}-4x-5=0
Subtraher 9 fra 4 for at få -5.
a+b=-4 ab=1\left(-5\right)=-5
Hvis du vil løse ligningen, skal du faktor venstre side ved at gruppere. For det første skal venstre side ikke skrives som x^{2}+ax+bx-5. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
a=-5 b=1
Da ab er negative, skal a og b have de modsatte tegn. Da a+b er negativt, har det negative tal en højere absolut værdi end det positive. Det eneste par af den slags er systemløsningen.
\left(x^{2}-5x\right)+\left(x-5\right)
Omskriv x^{2}-4x-5 som \left(x^{2}-5x\right)+\left(x-5\right).
x\left(x-5\right)+x-5
Udfaktoriser x i x^{2}-5x.
\left(x-5\right)\left(x+1\right)
Udfaktoriser fællesleddet x-5 ved hjælp af fordelingsegenskaben.
x=5 x=-1
Løs x-5=0 og x+1=0 for at finde Lignings løsninger.
x^{2}-4x+4=9
Brug binomialsætningen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til at udvide \left(x-2\right)^{2}.
x^{2}-4x+4-9=0
Subtraher 9 fra begge sider.
x^{2}-4x-5=0
Subtraher 9 fra 4 for at få -5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, -4 med b og -5 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Kvadrér -4.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
Multiplicer -4 gange -5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
Adder 16 til 20.
x=\frac{-\left(-4\right)±6}{2}
Tag kvadratroden af 36.
x=\frac{4±6}{2}
Det modsatte af -4 er 4.
x=\frac{10}{2}
Nu skal du løse ligningen, x=\frac{4±6}{2} når ± er plus. Adder 4 til 6.
x=5
Divider 10 med 2.
x=-\frac{2}{2}
Nu skal du løse ligningen, x=\frac{4±6}{2} når ± er minus. Subtraher 6 fra 4.
x=-1
Divider -2 med 2.
x=5 x=-1
Ligningen er nu løst.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Tag kvadratroden af begge sider i ligningen.
x-2=3 x-2=-3
Forenkling.
x=5 x=-1
Adder 2 på begge sider af ligningen.