Evaluer
\left(x+2\right)\left(x^{2}-1\right)^{2}
Udvid
x^{5}+2x^{4}-2x^{3}-4x^{2}+x+2
Graf
Aktie
Kopieret til udklipsholder
\left(x+2\right)\left(x^{2}-2x+1\right)\left(x+1\right)^{2}
Brug binomialsætningen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til at udvide \left(x-1\right)^{2}.
\left(x+2\right)\left(x^{2}-2x+1\right)\left(x^{2}+2x+1\right)
Brug binomialsætningen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til at udvide \left(x+1\right)^{2}.
\left(x^{3}-3x+2\right)\left(x^{2}+2x+1\right)
Brug fordelingsegenskaben til at multiplicere x+2 med x^{2}-2x+1, og kombiner ens led.
x^{5}+2x^{4}-2x^{3}-4x^{2}+x+2
Brug fordelingsegenskaben til at multiplicere x^{3}-3x+2 med x^{2}+2x+1, og kombiner ens led.
\left(x+2\right)\left(x^{2}-2x+1\right)\left(x+1\right)^{2}
Brug binomialsætningen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til at udvide \left(x-1\right)^{2}.
\left(x+2\right)\left(x^{2}-2x+1\right)\left(x^{2}+2x+1\right)
Brug binomialsætningen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til at udvide \left(x+1\right)^{2}.
\left(x^{3}-3x+2\right)\left(x^{2}+2x+1\right)
Brug fordelingsegenskaben til at multiplicere x+2 med x^{2}-2x+1, og kombiner ens led.
x^{5}+2x^{4}-2x^{3}-4x^{2}+x+2
Brug fordelingsegenskaben til at multiplicere x^{3}-3x+2 med x^{2}+2x+1, og kombiner ens led.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}