Evaluer
a
Differentier w.r.t. a
1
Aktie
Kopieret til udklipsholder
a-0\times 1+35\times 0\times 0\times 1-\left(-21\times 0\times 2\right)
Multiplicer 23 og 0 for at få 0.
a-0+35\times 0\times 0\times 1-\left(-21\times 0\times 2\right)
Multiplicer 0 og 1 for at få 0.
a-0+0\times 0\times 1-\left(-21\times 0\times 2\right)
Multiplicer 35 og 0 for at få 0.
a-0+0\times 1-\left(-21\times 0\times 2\right)
Multiplicer 0 og 0 for at få 0.
a-0+0-\left(-21\times 0\times 2\right)
Multiplicer 0 og 1 for at få 0.
a-0-\left(-21\times 0\times 2\right)
Ethvert tal plus nul giver tallet selv.
a-0-0\times 2
Multiplicer -21 og 0 for at få 0.
a-0-0
Multiplicer 0 og 2 for at få 0.
a+0-0
Multiplicer -1 og 0 for at få 0.
a-0
Ethvert tal plus nul giver tallet selv.
a+0
Multiplicer -1 og 0 for at få 0.
a
Ethvert tal plus nul giver tallet selv.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0\times 1+35\times 0\times 0\times 1-\left(-21\times 0\times 2\right))
Multiplicer 23 og 0 for at få 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0+35\times 0\times 0\times 1-\left(-21\times 0\times 2\right))
Multiplicer 0 og 1 for at få 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0+0\times 0\times 1-\left(-21\times 0\times 2\right))
Multiplicer 35 og 0 for at få 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0+0\times 1-\left(-21\times 0\times 2\right))
Multiplicer 0 og 0 for at få 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0+0-\left(-21\times 0\times 2\right))
Multiplicer 0 og 1 for at få 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0-\left(-21\times 0\times 2\right))
Ethvert tal plus nul giver tallet selv.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0-0\times 2)
Multiplicer -21 og 0 for at få 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0-0)
Multiplicer 0 og 2 for at få 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a+0-0)
Multiplicer -1 og 0 for at få 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0)
Ethvert tal plus nul giver tallet selv.
\frac{\mathrm{d}}{\mathrm{d}a}(a+0)
Multiplicer -1 og 0 for at få 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Ethvert tal plus nul giver tallet selv.
a^{1-1}
Afledningen af ax^{n} er nax^{n-1}.
a^{0}
Subtraher 1 fra 1.
1
For ethvert led t bortset fra 0, t^{0}=1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}