Evaluer
4a^{2}-2ab-3b^{2}
Udvid
4a^{2}-2ab-3b^{2}
Aktie
Kopieret til udklipsholder
2a^{2}-ab+2ba-b^{2}+\left(2a+b\right)\left(a-2b\right)
Anvend fordelingsegenskaben ved at gange hvert led i a+b med hvert led i 2a-b.
2a^{2}+ab-b^{2}+\left(2a+b\right)\left(a-2b\right)
Kombiner -ab og 2ba for at få ab.
2a^{2}+ab-b^{2}+2a^{2}-4ab+ba-2b^{2}
Anvend fordelingsegenskaben ved at gange hvert led i 2a+b med hvert led i a-2b.
2a^{2}+ab-b^{2}+2a^{2}-3ab-2b^{2}
Kombiner -4ab og ba for at få -3ab.
4a^{2}+ab-b^{2}-3ab-2b^{2}
Kombiner 2a^{2} og 2a^{2} for at få 4a^{2}.
4a^{2}-2ab-b^{2}-2b^{2}
Kombiner ab og -3ab for at få -2ab.
4a^{2}-2ab-3b^{2}
Kombiner -b^{2} og -2b^{2} for at få -3b^{2}.
2a^{2}-ab+2ba-b^{2}+\left(2a+b\right)\left(a-2b\right)
Anvend fordelingsegenskaben ved at gange hvert led i a+b med hvert led i 2a-b.
2a^{2}+ab-b^{2}+\left(2a+b\right)\left(a-2b\right)
Kombiner -ab og 2ba for at få ab.
2a^{2}+ab-b^{2}+2a^{2}-4ab+ba-2b^{2}
Anvend fordelingsegenskaben ved at gange hvert led i 2a+b med hvert led i a-2b.
2a^{2}+ab-b^{2}+2a^{2}-3ab-2b^{2}
Kombiner -4ab og ba for at få -3ab.
4a^{2}+ab-b^{2}-3ab-2b^{2}
Kombiner 2a^{2} og 2a^{2} for at få 4a^{2}.
4a^{2}-2ab-b^{2}-2b^{2}
Kombiner ab og -3ab for at få -2ab.
4a^{2}-2ab-3b^{2}
Kombiner -b^{2} og -2b^{2} for at få -3b^{2}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}